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Abstract 

Background  Several studies showed genome-wide DNA methylation during Arabidopsis embryogenesis and germi‑
nation. Although it has been known that the change of DNA methylation mainly occurs at CHH context mediated by 
small RNA-directed DNA methylation pathway during seed ripening and germination, the causality of the methyla‑
tion difference exhibited in natural Arabidopsis ecotypes has not been thoroughly studied.

Results  In this study we compared DNA methylation difference using comparative pairwise multi-omics dynam‑
ics in Columbia-0 (Col) and Cape Verde Island (Cvi) ecotypes. Arabidopsis genome was divided into two regions, 
common regions in both ecotypes and Col-specific regions, depending on the reads mapping of whole genome 
bisulfite sequencing libraries from both ecotypes. Ecotype comparison was conducted within common regions and 
the levels of DNA methylation on common regions and Col-specific regions were also compared. we confirmed 
transcriptome were relatively dynamic in stage-wise whereas the DNA methylome and small RNAome were more 
ecotype-dependent. While the global CG methylation remains steady during maturation and germination, we found 
genic CG methylation differs the most between the two accessions. We also found that ecotype-specific differentially 
methylated regions (eDMR) are positively correlated with ecotype-specifically expressed 24-nt small RNA clusters. In 
addition, we discovered that Col-specific regions enriched with transposable elements (TEs) and structural variants 
that tend to become hypermethylated, and TEs in Col-specific regions were longer in size, more pericentromeric, 
and more hypermethylated than those in the common regions. Through the analysis of RdDM machinery mutants, 
we confirmed methylation on Col-specific region as well as on eDMRs in common region are contributed by RdDM 
pathway. Lastly, we demonstrated that highly variable sequences between ecotypes (HOT regions) were also affected 
by RdDM-mediated regulation.

Conclusions  Through ecotype comparison, we revealed differences and similarities of their transcriptome, methyl‑
ome and small RNAome both in global and local regions. We validated the contribution of RdDM causing differential 
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methylation of common regions. Hypermethylated ecotype-specific regions contributed by RNA-directed DNA meth‑
ylation pathway largely depend on the presence of TEs and copy-gain structural variations. These ecotype-specific 
regions are frequently associated with HOT regions, providing evolutionary insights into the epigenome dynamics 
within a species.

Keywords  Arabidopsis, Methylome, Transposable elements (TEs), Structural variation, RNA-directed DNA methylation 
(RdDM)

Background
DNA methylation is an epigenetic modification at the 
5′ position of a cytosine base, altering DNA accessibil-
ity and chromatin structure in eukaryotes. DNA meth-
ylation is known to regulate gene expression and gene 
imprinting, as well as transposon silencing and genome 
integrity [1]. While cytosine methylation occurs mainly 
at CG symmetric sites in mammals, plants exhibit a more 
comprehensive system; methylation occurs not only at 
CG sites but also at CHG and CHH sites (H = A, T, or C) 
[2, 3]. In Arabidopsis thaliana, a model flowering plant, 
only about 14% of genes contain CG methylation (mCG) 
exclusively in the transcribed gene body, whereas hetero-
chromatic TE and repeat sequences are highly methyl-
ated at all three sites [4].

The de novo methylation at all three cytosine con-
texts is mediated by small RNA-directed DNA methyla-
tion (RdDM) pathway. Then, symmetric methylated CG 
(mCG) is maintained during DNA replication by DNA 
METHYLTRANSFERASE 1 (MET1) [5]. Symmetric 
methylated CHG (mCHG) is maintained by CHROMO-
METHYLASE 3 (CMT3) using its chromodomain that 
recognizes H3K9 methylation [6, 7]. Asymmetric CHH 
methylation (mCHH) is only maintained by de novo 
methylation due to the lack of mCHH on the parental 
DNA strand [1, 8, 9]. Heterochromatic regions, including 
TE or repeat elements, are transcribed by plant-specific 
RNA polymerase IV (pol IV), and the transcripts are 
processed into 24-nucleotide(nt) small RNAs or 21-nt 
aberrant small RNAs. These small RNAs act together 
with pol V-derived transcripts and recruit the de novo 
methyltransferase, DOMAIN REARRANGED METH-
YLTRANSFERASE 2 (DRM2), to methylate its target 
regions at all three cytosine contexts. Also, chromodo-
main-containing CMT2 methylates CHH and, to a lesser 
extent, CHG, mainly at pericentromeric heterochromatic 
regions independently of small RNAs [10, 11].

Since 24-nt small RNAs were found to play essen-
tial roles in plant methylome regulation, many stud-
ies exist investigating their mechanisms [12–14] and 
their impacts on plant biology [15, 16]. In recent years, 
there have been considerable advances in genomic 

difference-linked diversity in methylome between 
Arabidopsis ecotypes and their involvement in evolu-
tion and adaptation [17–19]. However, these studies 
have not dissected the epigenetic roles of small RNAs 
in natural variations. Studies profiled the small RNA 
dynamics of developing and germinating seeds, which 
provided valuable information on small RNA dynamics 
with epigenomic insights [20–23]; however, the inter-
play between methylome and small RNAome linked to 
natural variation in Arabidopsis is not well understood. 
Although the global change of DNA methylation during 
seed maturation and germination has been previously 
reported for Arabidopsis and soybean, the observa-
tions are limited to a single reference ecotype, Col [24, 
25], or from different ecotypes, such as Ws-0 and Col, 
that are used during embryogenesis and germination, 
respectively [26]. Therefore, a pairwise comparison of 
DNA methylation differences accompanying associa-
tion analyses for the small RNA and mRNA expressions 
is required to understand the mechanisms underlying 
epigenetic differences found in natural accessions.

Here, we present a genome-wide comparison of the 
DNA methylome, small RNAome, and transcriptome 
dynamics during seed ripening and germination in 
Col and Cvi. We classified Arabidopsis genome into 
two regions based on the mapping characteristic of 
whole-genome bisulfite sequencing (WGBS) reads: 
comparable common regions (CR), where the sequence 
reads from both Col and Cvi are well mapped; Col-
specific regions (Col SR), where only the Col WGBS 
reads are well mapped (See Methods and materials 
section for the detailed conditions). We demonstrate 
that ecotype-specific differentially methylated regions 
(eDMRs) determined in CR strongly correlated with 
highly expressed 24sRC (24-nt small RNA Cluster) in 
an ecotype-specific manner. We also discovered signifi-
cantly higher methylation levels in the Col SR than CR 
with accompanying 24sRC, in an ecotype-specific and 
RdDM-dependent manner. Then, we present several 
factors responsible for higher methylation levels in Col 
SR, providing evolutionary insight into how different 
methylation levels in different ecotypes originated from 
natural variation within a species.
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Results
CG ecotype‑specific differentially methylated regions 
(eDMRs) are strongly maintained in the gene body 
throughout development
To understand variation in the molecular dynamics dur-
ing seed ripening and germination processes, we per-
formed NGS-based multi-omic analysis, including the 
transcriptome, small RNAome, and DNA methylome, on 
seeds sampled from two Arabidopsis accessions, Col and 
Cvi. We chose Cvi to compare to the reference, Col, since 
Cvi is known to have the lowest CG gene body methyla-
tion (gbM) among over 1000 Arabidopsis accessions [19]. 
Seeds were sampled from three stages: freshly harvested 
(FH) fully matured green seeds from green plants, after-
ripening (AR) seeds harvested from fully dried plants, 
and germination-stimulated seeds (GS) (see Method, 
Additional file 1: Fig. S1).

For DNA methylome analysis, we used fractional win-
dow without overlap. The level of methylation was calcu-
lated by dividing the number of mC with the number of 
mC plus T at single base. The methylation levels included 
in a window were averaged for representing the methyla-
tion level of a window. The size of window varied from 
each analysis (see Methods in detail).

For a global methylome view, we used compara-
ble common regions where were mapped to TAIR10 in 
both ecotypes using our WGBS libraries (see Methods). 
Figure  1a shows the chromosomal heat map of mCG, 
mCHG, and mCHH during development. The most 
striking difference between the two ecotypes is observed 
in mCG at chromosomal arms (e.g. black sector), both 
ecotypes show a distinctly higher mCHH change at peri-
centromeric regions (e.g. red sector) in the AR stage 
(Fig. 1a).

mCG did not globally change during the three devel-
opmental stages, maintaining the methylation differ-
ence between the two ecotypes (Fig.  1b). In contrast, 
mCHG and mCHH were the highest in the AR stage, 
while their methylation levels were almost the same 
in the two ecotypes (Fig.  1b). The dynamics of the 
genebody methylation (gbM) mirrored the global 
view (Fig.  1b, c-e). The non-CG methylation of TE 
showed the similar dynamic pattern to the non-CG 
genic regions, except for the higher methylation levels 
(Fig. 1b, d, e). On the other hand, the mCG pattern of 
TE was different from the gene or global view; AR seeds 
exhibited the highest methylation levels (Fig.  1b, c). 
These results suggest that Cvi, which is known to have 
the lowest mCG levels among all ecotypes [19], dis-
play the same mCHH dynamics during seeds matura-
tion and germination as Col, at least for their conserved 
regions [24–26]. Therefore, cytosine methylation 

tends to reach maximal levels at the AR stage and then 
decrease during germination, although their levels in 
each accession are different. Since the levels of non-
CG methylation were very similar in both ecotypes and 
mCG were significantly different, the mCG difference is 
the primary source of the total methylation difference 
between Col and Cvi.

Since the global mCG level ecotype differences, 
but not mCHG and mCHH levels, were maintained 
throughout seed ripening and germination processes, 
we asked if the global mCG level difference between 
both ecotypes is also maintained from local regions or 
not. First, we calculated the difference in methylation 
levels of each 50 bp window at each stage and each of 
the genomic features. Then, we defined eDMR from 
comparable CR where the DNA sequences exist in both 
ecotypes as the regions representing between-ecotype 
Δ(mC level) more than a standard deviation from the 
global mean of Δ(mC level) at each stage. Overall, CG 
eDMRs are more strongly maintained than CHG or 
CHH eDMRs during development (Table  1). Specifi-
cally, more than 89% of CG eDMRs (58,923) of a stage 
are maintained during development (Table  1). CHG 
eDMRs are slightly less maintained than CHH eDMRs 
in approximately half of conserved DMRs (22,647) dur-
ing three developmental stages. Interestingly, genic 
regions are more robustly maintained than other 
genomic features in all cytosine contexts (Table  1). 
More than 90% of CG eDMRs (49,205) are well main-
tained in the genic regions. By contrast, eDMRs are the 
least maintained in TEs compared to other genomic 
features, especially for non-CG sites (Table 1).

To further confirm the highly maintained ecotype 
difference in the genic regions, the mC of each gbM 
between both ecotypes at each developmental stage 
was compared. Then, we sectioned the AR stage into 
four particular parts (copper metallic: methylated only 
in Col, pink: methylated only in Cvi, azure blue: middle 
mC levels in both ecotypes, purple: high mC levels in 
both ecotypes) to track the mC change of each gene in 
sections in FH and GS stages. Figure  1f clearly shows 
the presence of many more hyper mCG genes in Col 
(X-axis) than Cvi (Y-axis). Furthermore, the position 
of sections was well maintained for genes even in other 
developmental stages, meaning that each mCG gbM is 
strongly maintained. This result supports our previous 
finding that mCG gbM is static and strongly maintained 
differentially in the ecotypes throughout development. 
By contrast, the position and aspect of the sectioned 
parts from the AR stage in TEs are changed in FH and 
GS stages (Additional file 1: Fig. S2), suggesting mC of 
TE regions are dynamically changed.
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Different dynamics of the transcriptome and small 
RNAome are shown across the stages and ecotypes
To better understand the divergent methylome dynam-
ics between Col and Cvi during seed ripening and 
germination, we examined the mRNA expression of 
methylation regulators in three developmental stages. 

The expression patterns of many RdDM pathway genes 
involved in Pol IV-dependent siRNA biogenesis and Pol 
V-mediated de novo methylation were similar in both 
ecotypes (Additional file  1: Fig. S3). For example, in 
both ecotypes, DRM2 de novo methyltransferase was 
highly expressed during seed ripening and germination, 

Fig. 1  DNA methylation during seed ripening and germination in both ecotypes. a Chromosomal DNA methylation view. Red-colored circle 
indicates centromere. Sections in black or red indicate each pericentromere and chromosomal arm, respectively. b Average of DNA methylation 
level (%) of Col (lined) and Cvi (dotted) was calculated according to developmental stages in global (left panel), gene (middle panel), and 
transposable elements (right panel). c Stable difference of genebody methylation level between Col and Cvi. Genes including more than 5 sites 
of analyzed cytosine context with at least 10 reads were analyzed. Four differentially colored sections were selected at the AR stage for tracing 
the change in other stages. Sectioned several parts from the AR stage, methylated in Col but not Cvi (copper metallic), methylated in Cvi but 
not Col (pink), middle level in both ecotypes (azure blue), and highly methylated in both ecotypes (purple). (d–f) The methylation level of gene, 
transposable elements, and surrounding regions were analyzed for each cytosine context
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speculating that the global dynamics of DNA methyla-
tion is similar in both ecotypes is tempting.

To investigate small RNAome dynamics, first, we pro-
filed small RNAs by their length and 5′-end nucleotide. 
Globally, the length and 5′-end nucleotide distribu-
tion of mapped small RNA reads displayed significant 
compositional changes in 21-nt and 24-nt, which were 
mainly caused by changes in 21 U (representing 
AGO1-loaded small RNAs, mainly microRNAs and 
21-nt siRNAs) and 24A (representing AGO4-loaded 
small RNAs, mainly heterochromatic siRNAs) species, 
respectively, between AR and GS (Fig.  2a, Additional 
file 1: Fig. S4a). During AR to GS transition, the 20-nt 
and 21-nt population was increased by 1.8–2.0-fold, 
and 24-nt decreased by ~ 1.3-fold both in Col and Cvi. 
To confirm if the decrease of 24-nt small RNA popula-
tion is genome-wide, we defined clusters of small RNAs 
using ShortStack and conducted differential expres-
sion analysis on 24-nt small RNA clusters (24sRC, 
n = 12,502) between AR and GS was performed (Addi-
tional file  1: Fig. S4b, c). We observed 3567 and 97 of 
24sRCs showed decreased and increased expression, 
respectively, during AR to GS transition in Col. Most 
of these loci changed by 1.2–1.5 fold (FDR < 0.05) 
(Additional file 1: Fig. S4c), which is similar to the fold-
change level of the global 24-nt small RNA population. 
Only 148 and 62 loci of those 24sRCs were down- and 
up-regulated more than twofold during the same 
period (Additional file 1: Fig. S4c). This was similar to 
what we observed from the fold-change of global 24-nt 
small RNA population. Together, this suggests that the 
decrease of the 24-nt small RNA population during AR 
to GS transition occurs in global rather than limited to 
specific genomic loci.

To find the difference of the dynamics between tran-
scriptome and small RNAome, correlation and differ-
ential expression analysis between stages and ecotypes 
were performed. Transcriptome and small RNAome 
profiling across 6 samples showed a significant cor-
relation between FH and AR in Col and Cvi (Fig.  2b). 

However, differences were found in dynamics between 
the transcriptome and small RNAome in detail. Com-
pared to the high between-ecotype correlation in 
the mRNA transcriptome (Pearson, R = 0.87–0.89), 
the small RNAome displayed a more divergent pro-
file between both ecotypes in the same developmental 
stage (Pearson, R = 0.49–0.566) (Fig.  2b). On the con-
trary, a comparison between GS and the other two 
stages in small RNAome showed a stronger correlation 
(Pearson, R = 0.89–0.916) than in the transcriptome 
(Pearson, R = 0.64–0.73), which is similar to the level 
of correlation observed in the comparison between Col 
GS and Cvi FH/AR and vice versa (Pearson, R = 0.63–
0.67) (Fig. 2b).

Accordingly, our differential expression analysis 
reflected the correlation results (FDR < 0.05, fold-
change ≥2-fold). A substantial portion of protein-
coding genes was differentially expressed from Col 
and Cvi in a stage-wise manner (10.0 k, ~ 95%) (Addi-
tional file  1: Fig. S5a-e), which is mainly comprised 
of DEGs between AR and GS in both ecotypes (Col: 
7161, ~ 90.5%; Cvi: 6359, ~ 76.6%) (Additional file  1: 
Fig. S5b,c). 35% of the DEGs could explain the inter-
ecotype differences (Additional file 1: Fig. S5a). In small 
RNAome, we confirmed 7917 of 12,502 24sRCs exhib-
ited differential expression from stage-wise and/or 
ecotype-wise comparison. Among these 7917 24sRCs, 
98.9% (7835) were differentially expressed between Col 
and Cvi in at least one stage. Meanwhile, 8.8% (702) of 
24sRCs exhibited differential expression between stages 
in Col and/or Cvi (FDR < 0.05, fold-change ≥2 fold), 
and most of them (620 loci) also exhibited ecotype-
wise differential expression (Fig.  2c, Additional file  1: 
Fig. S5f, i, j). These results are consistent with the pre-
vious report in maize in that transcriptome are more 
divergent between roots and shoots while siRNAs are 
more associated with TEs and repetitive elements [27]. 
Taken together, our results demonstrate that the global 
dynamics of transcriptome and small RNAome across 
the stages and ecotypes act differently.

Table 1  The number of differentially methylated regions (DMRs) during seed ripening and germination

The size of a window is 50 bp without overlap. R&G, continuous DMR during seed ripening and germination

CG CHG CHH

R&G FH AR GS R&G FH AR GS R&G FH AR GS

Total 58,923 66,565 65,382 65,820 22,647 40,812 38,969 45,516 77,406 134,631 127,451 137,852

Gene 49,205 54,651 54,182 54,319 5933 7775 7366 7592 13,981 20,497 19,341 19,227

Gene&TE 464 558 535 532 452 788 732 810 1760 2740 2673 2750

TE 4212 5234 4883 5193 9988 22,260 21,266 26,700 37,089 73,208 67,778 77,278

IGR 5042 6122 5782 5776 6274 9989 9605 10,414 24,576 38,186 37,659 38,597
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Methylation levels on eDMRs are positively correlated 
with differential expression of 24‑nt small RNAs
7835 of 12,502 24sRCs (~ 62.6%) were differentially 
expressed in ecotype-wise manner (Additional file  1: 
Fig. S5f ). Considering that 24-nt small RNAs play cru-
cial roles in the Pol V-mediated RdDM pathway and one 

of their major targets is TE [1, 28], ecotype-specific dis-
tribution of 24-nt small RNAs might be related to the 
formation of ecotype DMRs (eDMRs) on TE regions. 
First, we examined if eDMRs and TE regions are associ-
ated with these 24sRCs in an ecotype-dependent man-
ner. To do this, we defined those 7835 of 24sRCs as 

Fig. 2  Global Profiling of Transcriptome and Small RNAome from Col and Cvi. a Stage-wise small RNA length distribution for Col and Cvi. Reads 
were counted by reads per million mapped (RPM). b Pearson correlation for transcriptome (blue color gradient) and small RNAome (red color 
gradient) from Col and Cvi. c Hierarchical clustering of differentially expressed 24sRCs between stages from Col/Cvi or between the same stage 
for Col/Cvi. Each 24sRC was defined by ShortStack and their expression levels were measured. Hierarchical clustering was conducted after 
standardization (Z-score)
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“e24sRC” (ecotype-wise differentially expressed 24sRC) 
loci. For consistency in our analysis, we selected 
6512 of e24sRC loci exhibiting differential expression 
between Col and Cvi across all three developmental 
stages, which were further classified into two groups; 
e24sRC-Col (3959 loci) exhibiting higher expression 
level in Col than that in Cvi, and e24sRC-Cvi (2553 loci) 
exhibiting higher expression level in Cvi than that in 
Col (Additional file 1: Fig. S5i, j). Similarly, eDMRs that 

were consistently hyper- or hypo-methylated between 
ecotypes across stages were chosen for further analysis.

To characterize the genomic distribution of e24sRC, 
we confirmed the number of overlaps of e24sRC loci 
with genes and TEs from Araport11 annotation [29]. 
As expected, both e24sRC-Col and e24sRC-Cvi groups 
showed more significant overlap with TE than the genic 
region, similar to other 24sRC loci (Fig.  3a). However, 
clear differences were found between the two groups 
in the composition of overlapping genomic features 

Fig. 3  Assessment of 24-nt siRNA clusters (24sRC) enrichment for genomic features and ecotype-specific DMRs (eDMRs). a Composition of genes 
and transposable elements (TE) overlap with e24sRC-Col (red), e24sRC-Cvi (blue), e24sRC-1/2 (pink, 24sRCs exhibiting differential expression 
between ecotypes in one or two stages) and non-e24sRC (grey). Features that did not overlap with any of the 24sRCs are represented as grey. 
Numbers near the colored part of the bar graph represent numbers of features that overlap with each category of 24sRCs. b Composition of 
24sRCs, e24sRC-Col, and e24sRC-Cvi overlap with genomic features, including gene, TE, and intergenic region (IGR). c Numbers and compositional 
ratio of ecotype-specific differentially methylated regions (eDMRs) overlapping e24sRCs (left panel), and that of e24sRCs overlapping eDMRs (right 
panel). Hyper: hypermethylated region in Col; Hypo: hypermethylated region in Cvi. d Randomization-based permutation test results. e24sRC loci 
(red-boxed) were 1000-times randomly re-distributed across the Arabidopsis genome, and to measure the numbers of overlaps between them, 
each randomly re-distributed feature set was compared with eDMR loci (black-boxed). Green dashed line represents the average distribution for 
numbers of overlaps between randomly re-distributed e24sRC loci and eDMR loci. Red solid line represents observed overlaps with e24sRC loci 
and eDMR loci. The X-axis represents the numbers of overlaps between e24sRC loci and eDMR loci, and the Y-axis represents the density value for 
distribution
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(Fig.  3b). TE-overlapping e24sRC-Col loci were more 
than 50% (reaching ~ 73% if includes “Gene & TE”), 
while TE-overlapping e24sRC-Cvi comprised only 35.7%, 
which is even lower than that in total 24sRC. To verify 
the significance of these overlaps, we conducted rand-
omization-based permutation tests between each group 
of e24sRC loci and other genomic features analyzed 
above. Unsurprisingly, the overall e24sRC association 
with TE or TE-nearby region is significant, and TE was 
more strongly associated with e24sRC-Col than e24sRC-
Cvi, which was expected from the overlap composition 
results (Additional file 1: Fig. S6a).

Next, we checked the overlaps between e24sRC and 
eDMRs to see whether methylation level differences are 
correlated with e24sRCs in a 24-nt small RNA expres-
sion level-dependent manner between ecotypes. A con-
siderable number of overlaps were observed between 
Col-hypermethylated eDMRs (hyper eDMRs) and 
e24sRC-Col. Accordingly, a similar result was also 
observed between Col-hypomethylated eDMRs (hypo 
eDMRs) and e24sRC-Cvi (Fig.  3c). In addition, e24sRC-
Col loci significantly overlapped with hyper eDMRs and 
barely overlapped with hypo eDMRs, and similar pat-
terns were shown between e24sRC-Cvi and eDMRs 
(Additional file 1: Fig. S6b). The permutation test results 
between e24sRC and eDMR were consistent with the 
intersection results; e24sRC-Col loci were strongly 
associated with hyper eDMRs (Fig.  3d, left panel of 
“CG:Hyper”, “CHG:Hyper” and “CHH:Hyper”), while 
e24sRC-Cvi loci were strongly associated with hypo 
eDMRs (Fig. 3d, right panel of “CG:Hypo”, “CHG:Hypo” 
and “CHH:Hypo”). Overall results suggested that there 
are positive correlation between e24sRC expression levels 
and methylation levels in eDMRs.

Although all three methylation contexts of eDMRs dis-
played an association with e24sRC loci, CHH-eDMRs 
showed the strongest association with both e24sRCs, 
followed by CHG-eDMRs and CG-eDMRs (Fig.  3d). In 
addition, when we checked how many e24sRC-Col or 
e24sRC-Cvi loci were overlapped with multiple contexts 
of eDMRs, we observed that most of CG- and CHG-
eDMR were co-exist with CHH-eDMR (Additional file 1: 
Fig. S6c). Taken together with positive correlation pat-
terns between e24sRC expression levels and methylation 
on eDMRs, we speculated that differential methylation in 
eDMRs is mainly affected by RdDM pathway. Since the 
involvement of RdDM activity can be easily detected at 
CHH context than CG or CHG contexts in RdDM path-
way mutants, we analyzed CHH methylation difference 
using methylome dataset from ago4/6/9 and drm1/2 
mutants sampled in mature embryos [14] to address 
the involvement of RdDM pathway on the formation 
of eDMR. Results showed that the methylation level of 

eDMRs along with e24sRCs or Non-e24sRC (fold-change 
< 2 fold or FDR > 0.05 between ecotypes throughout all 
developmental stages) were significantly decreased com-
pared to eDMRs that did not overlap with any 24sRCs 
(Additional file 1: Fig. S6d).

In conclusion, these positive correlations between 
methylation and 24-nt small RNA expression in eDMRs 
and the mutant analysis results suggest the contribution 
of RdDM in regulating methylation levels in an ecotype-
specific manner.

A large composition of TE and intrinsic features 
in Col‑specific regions contribute to hypermethylation
To compare methylome levels between ecotypes, we 
selected valid window passing the criteria of 50 bp win-
dows, including at least 3 cytosine contexts with at least 
10 reads, in all six samples analyzed. This is represented 
as an intersection part or common regions called “CR” in 
Fig. 4a, comprising more than 80% of total windows for 
each mC context. No significant difference was found in 
average of non-CG methylation levels between ecotypes 
during ripening and germination processes in this CR 
(Fig. 1 4b,b left). However, when we did the same global 
comparison from all measurable regions, which passed 
the criteria from at least one out of six samples (Fig. 4a, 
union for each ecotype), Col exhibited significant higher 
average non-CG methylation level than Cvi across all 
three stages (Fig. 4b right). This indicated that the addi-
tionally included regions, most of which were comprised 
of Col-specific regions (hereafter, Col SR) in major, 
exhibit higher non-CG methylation level compared to 
CR Because we aligned the sequence reads to the Col 
reference genome without allowing mismatch, Col SR 
would contain many sequence differences between the 
ecotypes. Our result suggests that Col SR is the site that 
contains higher methylation levels in all cytosine con-
texts than in comparable intersection regions.

Therefore, we hypothesized the presence of a correla-
tion between DNA sequence diversity and DNA meth-
ylation and examined the composition of the genomic 
features for those ecotype-specific regions. This analysis 
revealed that Col SR was composed of significantly more 
TEs for all cytosine contexts (Fig. 4c), which was statis-
tically supported by the permutation test between them 
(Additional  file  3: Dataset S1a). Given that TEs demon-
strate generally higher methylation levels than other 
genomic features, we supposed that the higher mC levels 
in Col SR were mainly due to the high composition of TE. 
Interestingly, when we compared the average mC levels 
of TE from CR and Col SR, we found TE of Col SR shows 
higher average mC levels than TE of CR (Fig. 4d), which 
is true for the genic regions as well (Fig. 4d).
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In summary, CR displayed very similar levels of non-
CG methylation between ecotypes, while relatively 
diverged Col SR exhibited higher methylation level than 
CR in Col. The high mC levels in Col SR are not only 
from a larger TE composition but also from intrinsic 
properties retained in Col SR.

The correlation between mC levels and SNPs in Col SR
The possibility exists that Col SR retains many sequence 
variations, indirectly or directly resulting in higher 
methylation, and we first considered single nucleotide 
polymorphism (SNP) as a candidate. However, when we 
divided Col SR windows into two groups depending on 
the presence of SNPs or not, the number of windows 
with SNPs was much lower than those without SNPs in 
Col SR (Table 2), suggesting other factors beyond SNPs.

Despite fewer SNPs in Col SR, we examined the rela-
tionship between the number of SNPs and their DNA 

methylation levels, if any, in Col SR and in CR for a com-
parison. To do this, we used methylation levels of the Col 
FH stage and the SNP information identified by a com-
parison between Col (TAIR10) and Cvi (Ver.2) reference 

Fig. 4  Regions where only the reads of Col were well mapped and its hypermethylation. a Venn diagrams for describing how many windows 
could be analyzed in each ecotype. All numbers indicate the number of 50 bp windows. The windows in the dark red colored intersection (CR) 
were read in 6 samples and regions, and the windows where only were read enough more than one stage in Col but not in Cvi were colored in 
lime (Col SR); those two groups were compared in other analysis (b–d). b Average methylation according to developmental stage in CR (left side) 
and all measurable regions considered a window in more than one stage. c The composition ratio of genomic features in both CR and Col SR was 
compared. The number of each group is written above each bar. Ref, the composition of TAIR10 genome. d Averages of CR and Col SR methylation 
level of Col according to developmental stages were compared in gene and transposable elements

Table 2  The number of windows including SNP per cytosine 
context in Col SR

Single Nucleotide Polymorphism (SNP) was decided by comparing Col and 
Cvi genome sequence. The size of the windows is 50 bp without overlap. The 
percentage in the bracket is based on the total number of windows for each 
cytosine context

Cytosine context CG CHG CHH

Total No. of windows 90,839 (100%) 111,478 (100%) 250,505 (100%)

No. of windows with 
SNP

23,232 (25.6%) 25,137 (22.5%) 62,685 (25.0%)

No. of windows 
without SNP

67,607 (74.4%) 86,341 (77.5%) 187,820 (75.0%)
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sequences [30]. Our analysis clearly revealed that Col SR 
decreased in mC levels, whereas the common CR dem-
onstrated an increase in mC levels as the number of SNP 
increased, regardless of cytosine contexts (Fig. 5a). If the 
number of SNPs directly correlates with DNA meth-
ylation levels, it would show the same pattern in both 
regions. Since our analysis showed an anticorrelation of 
mC with the number of SNPs in Col SR but a positive 
correlation in CR, only the number of SNPs does not 
affect mC in Col SR and in CR. These results were repro-
duced when we used Col AR and Col GS (Additional 
file 1: Fig. S7).

Next, we tested the correlation between mC and the 
number of SNPs separately for gene and TE. This revealed 
that the correlations shown in each group resulted from 
different genomic features. The positive correlation in CR 
was contributed not only from TE, but also from gene 
that comprises at least 60% of the CR genomic features in 

all cytosine contexts (Fig. 5 4b,c). However, the anticor-
relation detected in Col SR is mainly from gene, although 
its portion in Col SR is less than 30% (Fig.  5, 4b,c). On 
the contrary, although TE constitutes the most signifi-
cant genomic portion (approximately 50%) in Col SR, it 
does not significantly contribute to the anticorrelation 
between mC levels and the number of SNPs. In conclu-
sion, our analyses reveal that number of SNPs affects mC 
levels differently on CR and Col SR.

Further, we investigated whether any possible link 
exists between mC level and a specific substitution. We 
defined 50 bp windows, including any substitution in CR 
and Col SR, and then normalized methylation levels with 
the average and standard deviation. Our analysis revealed 
that the windows, including one or more of the four tran-
sition mutations (AG, CT, GA, and TC), are more meth-
ylated than other substitutions (Fig. 5c). Notably, the mC 
levels of four transition mutations are very similar in 

Fig. 5  Correlation between SNPs and methylation level and position of CR and Col SR. a The correlation between the number of SNPs and DNA 
methylation is analyzed. Numbers in X-axis represent the number of SNPs in a 50-bp window. b The windows overlapped in gene and transposable 
element (TE) from each CR, and Col SR was analyzed. The positive correlation shown in CR in (a) is strongly demonstrated in TE, and the negative 
correlation shown in Col SR in (a) is not shown in the windows overlapped with TE, but it is shown in the windows overlapped with gene. The 
height of the bar, mean; the length of error bar, std. c Methylation level according to each substitution, obtained by comparing Col and Cvi (the 
first letter is from Col), was normalized with mean and standard deviation ( x−m

σ
 ). a-c Methylation level of Col FH was used as a representative. d The 

position of CR and Col SR was analyzed in chromosomal view
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CR, but only AG and TC transition mutations are more 
methylated in Col SR, among other transitions or trans-
versions (Fig.  5c). Therefore, it is tempting to speculate 
that AG and TC mutations might be either a cause or 
consequence of the high methylation levels in this region. 
Alternatively, Col SR might reside in a more heterochro-
matic region of a chromosome than CR, thereby tending 
to be more methylated through AG and TC mutations 
over time. Indeed, we found that CR regions are located 
throughout the chromosome except in the pericentro-
meric region, whereas Col SR is located not only in the 
chromosomal arm but also even more in the pericentro-
meric region (Fig. 5d).

Ecotype‑specific structural variations in Col SR are 
hypermethylated
Since the number of SNPs does not explain the high 
mC levels in Col SR, we examined structural variances 
(hereafter, SVs) within Col SR by comparing TAIR10 
and the de novo Cvi genome [30] using a whole-genome 
sequence comparison tool (MUMmer, see Methods). SVs 
are categorized and described in an aspect of Col into six 
groups and the other unclassified SVs (Fig. 6a); a deletion 
(DEL), an insertion (INS), a duplicated sequence (DUP), 
a breaking insertion (BRK), an inverted sequence (INV), 
and a translocation event (SEQ). For Col whole-genome 
categorization into the 6 groups above, 89% belongs to 
the Unclassified followed by DUP, comprising 5.5% of the 
genome (Fig. 6a).

We also validated significance of enriched MUM-
mer-predicted SVs in Col SR with permutation assay 
(Additional file  1: Fig. S8a). In addition, to address the 
significance of our results, we decided to utilize previ-
ously reported Arabidopsis SV loci predicted by Jiao et al. 
[30] and conducted a permutation test as well. In con-
cordance with the permutation test results for an overlap 
between MUMmer-predicted SVs and CR or Col SR, our 
permutation test confirmed that, for all mC contexts, Col 
SR was strongly associated with most types of SVs, while 
CR was not (Additional file 1: Fig. S8a). Differences were 
found in association according to the mC context or type 
of SVs. For example, CHH of Col SR showed the most 
substantial association level with “DUP” among MUM-
mer-predicted SV types (Additional file 1: Fig. S8a, Addi-
tional file 3: Dataset S2). In addition, Col SR exhibited a 
strong association with SVs that are related to sequence-
gain type (such as BRK or INS) or copy-gain type (such 
as “Copy-gain”-tagged SVs of “SyRI-predicted SV” in Fig. 
S8a) in Col (Additional file  1: Fig. S8a). This is consist-
ent with the result that Col SR is the region where Cvi’s 
WGBS reads were not well aligned.

As expected, CR contains very few structural variances, 
especially for the regions where SNPs are low (Additional 

file  1: Fig. S8b). In contrast, distinct structural features 
such as DUP, BRK, and INS are more enriched in Col SR 
(Fig.  6a, Additional file  1: Fig. S8b). Interestingly, more 
structural variants are included in Col SR when no SNP 
exists, and then, as SNPs increases, only the DUP and 
Unclassified classes are found (Additional file 1: Fig. S8b).

To confirm that these structural differences could con-
tribute to the high mC levels in Col SR, we checked the 
methylation levels in SVs. DUP showed strikingly higher 
mC levels than other variances (Fig. 6b). BRK, SEQ, and 
INV generally showed high mC levels. Interestingly, INS 
is in Col SR with the 3rd higher composition among SVs, 
but its mC level is even lower than the mean of mC levels 
of Col SR. Notably, the mC levels of SEQ contribute to a 
high mC level in Col SR, and even its composition ratio is 
lower than INS (Fig. 6a, b).

Accordingly, we examined whether those methylation 
differences are associated with 24-nt siRNA expression 
or not. As a result, the expression levels of 24-nt siRNAs 
on each SV type overlapping with Col SR were signifi-
cantly higher than those with CR (Fig. 6c). Therefore, SVs 
closely linked to 24-nt siRNAs are one of the factors con-
tributing methylation difference between CR and Col SR.

Since the Col SR includes many SVs with high expres-
sion of 24-nt siRNAs and accompanying high DNA 
methylation levels, we speculated RdDM regulation 
underlying methylation difference in Col SR. Using pub-
licly available ago4/6/9 and drm1/2 mutant methylome at 
mature embryos [14], we confirmed RdDM dependency 
on Col SR contributing high mCHH levels. These results 
demonstrated that between CR and Col SR where both 
regions displayed RdDM-dependent methylation lost for 
all cytosine contexts by these mutants, Col SR were more 
affected than CR (Fig. 6d, Additional file 1: Fig. S8c).

Taken together, along with a previous implication on 
the relationship between sequence variation and differen-
tial methylation [19], our analyses concordantly suggest 
that hypermethylation in Col SR compared to CR results 
from, at least partially, the sequence and structural differ-
ences from Cvi and is regulated by RdDM pathway.

Methylation of Col SR‑enriched genome rearrangement 
hotspots are contributed via RdDM pathway
We observed that Col SR loci were significantly enriched 
with SVs (Fig.  6a, Additional file  1: Fig. S8a), suggest-
ing that these loci underwent drastic sequence diver-
gence between Col and Cvi compared to CR. There 
were recently reported regions called “hotspots of rear-
rangements” (HOT regions) where multiple Arabidopsis 
ecotypes have independently evolved diverse haplotypes 
in an ecotype-specific manner because of their rapid 
sequence changes [30]. These HOT regions shared simi-
lar intrinsic characteristics with Col SR; they included 
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Fig. 6  Correlation between structural variants (SVs) and DNA methylation. a Structural variants (SVs) were analyzed for Col SR. The proportion 
of each SV was indicated as %. Unclassified are the regions not included in other SVs. “Col” indicates the composition of Col ref. genome. b DNA 
methylation dynamics of each SV during seed ripening and germination were analyzed. The average level of methylation is represented as dots 
and linked with a line (b, d). c Average 24-nt small RNA expression level of Col samples overlaps with CR or Col SR. “Col SR (CG|CHG|CHH)” indicates 
genomic loci covered by at least one of three types of cytosine methylation context windows in Col SR, and these loci were used to find 24sRCs 
overlap with Col SR. 24sRCs that did not overlap with “Col SR (CG|CHG|CHH)” loci were treated as CR-overlapping 24sRCs. d CHH methylation 
differences between wild type and RdDM machinery mutants in SV-overlapping CR and Col SR. Sequence-gain type SVs in Col SR were more 
hypomethylated than those in CR in mutants
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more TE and fewer genes compared to colinear regions 
(CR in our study), and they exhibited high structural 
diversity, which mainly caused by tandem duplication.

Because some properties mentioned above were 
shared between Col SR and HOT regions, we confirmed 
the overlap between HOT regions and other features 
analyzed in our study. Among ~ 10.2 Mb of total HOT 
regions, ~ 55% were overlapped by SVs, mainly by DUP 
(~ 3.5 Mb) and BRK (~ 1.26 Mb), which is consistent with 
a previous report that tandem duplication and large 
indels were shared by many HOT regions [30] (Fig. 7a). 
We also observed that ~ 4.0 Mb and ~ 3.6 Mb of HOT 
regions overlapped with Col SR and CR respectively, both 
of which mainly consisting of CHH context (Fig.  7a), 
and enrichment significance of CR and Col SR on HOT 
regions were additionally verified by permutation tests 
(Fig.  7b). These indicated that those highly sequence-
diverse regions between multiple ecotypes were physi-
cally associated with loci that we investigated.

We also confirmed that ~ 7.7 Mb (75.6%) of HOT 
regions were covered by 24sRCs (Fig.  7a). In addi-
tion, 24sRCs overlapped with HOT regions in Col SR 
showed higher expression than 24sRC overlapped 
with HOT regions in CR (Fig.  7c), which is consist-
ent with differential 24sRC expression observed in SV 
loci (Fig.  6c). When we checked the methylation level 
from Col SR and CR overlapped with HOT regions, we 
observed higher methylation level from HOT region-
overlapping Col SR than that in CR (Fig.  7d). Taked 
together with RdDM mutants analyses results on Col 
SR (Fig.  6d, Additional file  1: Fig. S8c), these signifi-
cant coverage of 24sRC on HOT regions and differen-
tial methylation between CR- and Col SR-overlapping 
HOT regions indicated that DNA methylation in HOT 
regions were also regulated by RdDM pathway suggest-
ing these epigenetic regulation suppresses these rapidly 
evolving, highly variable sequences between Arabidop-
sis ecotypes.

Fig. 7  Methylation level in highly sequence-variable HOT regions associated with Col SR, SVs and 24sRC are contributed via RdDM pathway. a Ratio 
and length of features covering HOT region. b Bar graphs showing permutation test-derived log2(observed/expected) significance for association 
between HOT regions and each of features tested. Randomization was conducted for merged CR, merged Col SR, each category of SV types, and 
24sRC-Total. Permutation was conducted 1000 times (P < 0.001). c,d Expression levels of 24sRCs (c), and methylation levels in CR and SR (d) that are 
overlapped with HOT regions. “Col SR (CG|CHG|CHH)” indicates genomic loci covered by at least one of three types of cytosine methylation context 
windows in Col SR, whereas “Col SR (CG∩CHG∩CHH)” indicates loci covered by all three types of cytosine methylation context windows in Col SR. 
The height of box and the error bar in d represent mean and standard deviation, and P-value in d was calculated with unpaired t-test with Welch’s 
correction. (****: P < 0.0001). e An example of HOT region covered by 24sRCs and overlapped by Col SR. 24-nt small RNA expression displayed as 
CP10M-normalized log-scale value. Levels of methylation on each cytosine base displayed as heatmap-style
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Discussion
Although our transcriptome analysis for RdDM-related 
genes in Fig. S3 did not provide certain genes respon-
sible for the differences in 24-nt siRNA levels between 
ecotypes, we discovered regions where the differences 
in methylation levels between two ecotypes were posi-
tively correlated with 24-nt siRNA abundances from 
significant numbers of eDMR loci. Thus, it is obvi-
ous that the differences in methylation levels were 
originated from the differences in 24-nt siRNA abun-
dances, not from the differences in expression levels of 
the RdDM-related genes. Since RdDM is well-known 
for acting in a self-reinforcing manner, it is possible 
that there are differences in overall efficiency of 24-nt 
siRNA generation, or differences in copy numbers of 
24-nt siRNA-generating sequences between Col and 
Cvi. Interestingly, Sigman et  al. reported recently that 
24-nt siRNAs are sufficient to trigger the first round of 
RdDM by guiding AGO4 and Pol V to loci without pre-
existing DNA methylation signatures, and the follow-
ing self-reinforcing RdDM cycle makes those loci more 
strongly methylated [12]. Thus, although RdDM path-
way gene expressions are the same in two ecotypes, it 
is tempting to speculate that more copy numbers exist 
in Col and more efficient 24-nt siRNA generation takes 
place, resulting in high DNA methylation levels in Col 
compared to Cvi.

Intriguingly, we found a positive and negative correla-
tion between mC levels and the number of SNPs in CR 
and Col SR, respectively (Fig. 5). It is tempting to spec-
ulate that a selective pressure might be applied in this 
evolutionary conserved CR, so that as SNPs increase, 
mC levels also increase, regardless of gene or TE. Given 
that the amino acid sequences of methylated genes 
likely evolve more slowly than those of unmethylated 
genes [31], it is plausible that increasing mC levels help 
to keep the amino acid sequences unchanged, as SNPs 
and mutations accumulate during evolution in genes 
of CR. A recent interesting report suggested that old 
long terminal repeat (LTR) TEs with an accumulation 
of mutations over the time could be transcribed again, 
leading to a secondary RdDM pathway [32]. Thus, mC 
levels of old TEs in CR may increase to silence TE tran-
scription generating again from the accumulated muta-
tions. By contrast, ‘Col SR’ shows anticorrelation of mC 
levels with the number of SNP, and this anticorrela-
tion is mainly from gene (Fig. 5a, b). This is interesting 
because genes in ‘CR’ and ‘Col SR’ show opposite pat-
terns for mC levels to the number of SNP. Specifically, 
the mC level decrease is striking from SNP 0 to SNP 
1 in ‘Col SR’ (Fig. 5b). This result prompts us to think 
that genes with newly obtained SNPs in ‘Col SR’ lose 

methylation rapidly, which can alter gene transcription, 
and this might contribute to a rapid evolution of genes 
in Col SR, at least in part, compared to genes in CR.

Since HOT regions, as well as SVs, were known to be 
enriched with TEs and 60% of HOT regions were on 
pericentromeric region, most of significant overlaps 
between HOT regions and 24sRCs in Fig. 7a might be 
due to well-known association between 24-nt small 
RNAs and TEs. In addition, because TEs in pericen-
tromeric region were known to be hypermethylated via 
RdDM pathway and caused sequence variations that 
lead to formation of SVs and ecotype-specific loci like 
Col SR, high methylation level observed from specific 
type of SV loci might be a presumable result. However, 
we observed Col SR locus that were enriched by SVs 
and HOT regions but barely covered by TEs (Fig.  7e). 
Like 24-nt small RNA distribution and DNA meth-
ylation patterns on RdDM-regulated TEs, these loci 
showed significant level of 24-nt small RNAs in Col 
along with all three types of cytosine methylation near 
or right on Col SR region. Though there were not anno-
tated HOT loci, we found another hypermethylated 
region enriched with SVs and 24-nt small RNAs with-
out TEs (Additional file 1: Fig. S9). These observations 
suggested that RdDM pathway contributes to methyla-
tion not only on TE-associated SV loci, but also on SV 
loci that neither were associated with nor were caused 
by TEs.

Conclusion
In this study, we conducted multi-omics analysis includ-
ing methylome, transcriptome, and small RNAome 
from developing seeds of two Arabidopsis ecotypes, 
Col and Cvi. Through comparing in an ecotype-wise 
manner, we revealed that ecotype-specific hypermeth-
ylation in the common region is positively correlated 
with ecotype-specific 24-nt small RNA expression, and 
verified the contribution of RdDM pathway to the for-
mation of those ecotype-dependent DNA methylation 
patterns in CR. Additionally, we examined the relation-
ship between sequence variation and hypermethylation 
in Col SR. We found that enriched SVs in Col SR were 
hypermethylated which seems to be contributed by 
RdDM pathway during seed ripening and germination 
in Arabidopsis.

In all, our extensive multi-omics study provides 
insights for understanding the formation and mainte-
nance of ecotype-specific methylation patterns from 
developing seeds in Arabidopsis. These results will help 
extend our knowledge of the contribution of RdDM-
mediated epigenetic regulation on highly variable DNA 
sequences between Arabidopsis ecotypes.
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Methods and materials
Plant materials and growth condition
Two accessions of Arabidopsis thaliana, Col (Colum-
bia-0, CS22625) and Cvi (Cape Verde Islands, CS1096) 
used in this study were obtained from ABRC seed stock 
center. Seeds were sown at MS (Marashige and Skoog) 
medium, grown until 10 days after germination, and 
transferred to the soil at 22 °C under long photoperiod 
(16 hours of light, 8 hours of dark) with cool white fluo-
rescent light (100 μmole/m2/s). Fully matured green seeds 
from brownish siliques just after starting to dry were har-
vested from both ecotypes and used for FH seeds. Seeds 
that were harvested from fully dried Col plants were used 
for Col AR. Cvi seeds harvested from the same staged 
dried plants were further dried for 60 days and then used 
for Cvi AR. For GS samples, AR-staged seeds from both 
ecotypes were treated stratification in the dark at 4 °C for 
three days, exposed to white light for two hours, and then 
incubated in the dark at 22 °C for 24 hours.

Sequencing library construction and data processing
Small RNA-Seq libraries were constructed following in-
house protocols [33]. Briefly, small RNAs were selected 
from the total RNA of each sample by 15% urea-PAGE. 
Next, eluted size-selected small RNAs were ligated into 
3′-adapter and 5′-adapter sequentially, followed by urea-
PAGE separation for each step of the adapter ligation 
reaction. Adapter-ligated small RNAs were amplified 
using Phusion polymerase (NEB), and then, the ampli-
fied products were separated by native-PAGE. Eluted 
small RNAs were analyzed using HiSeq2500 by Macro-
gen (Seoul, South Korea). For each stage of seeds from 
Col and Cvi, three biological replicates of small RNA-
Seq dataset were analyzed. Adapter sequence trimming 
and 18-to-26 nt-length read selection were performed 
using Trimmomatic (0.39, adapter: TGG​AAT​TCT​CGG​
GTG​CCA​AGG​AAC​TCC​AGT​CAC) and Cutadapt 
(v3.4). Next, trimmed reads were mapped to rRNA/
tRNA/snRNA sequences (RNACentral, v17) using bow-
tie (v1.3.0, −v 1 -m 0 -a) to filter-out structural non-
coding RNA reads. All filtered reads were mapped using 
bowtie (−v 0 -m 0 -k 0). Reads from Col samples were 
mapped to the TAIR10 reference genome sequence. To 
align filtered reads from Cvi, the pseudo-Cvi-TAIR10 
genome was generated by SNP replacement using Cvi 
SNP information available in public (ftp://ftp.Arabi-
dopsis.org/home/tair/Sequences/Ecker_Cvi_snps.txt; 
https://1001genomes.org/data/MPIPZ/MPIPZJiao2020/
releases/current).

For generating whole-genome bisulfite sequencing 
(WGBS) libraries, we harvested samples for multiple 
times in different days for each stage and each ecotype. 

Sampling was conducted 5/4/3 and 2/5/2 times for the 
biological replicates of Col FH/AR/GS and Cvi FH/AR/
GS, respectively. We extracted DNAs from each replicate 
separately. After checking the quality of DNAs, we com-
bined DNAs from each biological replicate to generate a 
singular library for each stage of each ecotype. This way 
enabled us to analyze many more regions for the DNA 
methylation levels with sufficient depth (more than 10x 
in this study). All of the Whole-genome bisulfite sequenc-
ing (WGBS) libraries were constructed using the KAPA 
library preparation kit (Roche) and EqiTech Bisulfite by 
Macrogen (Seoul, South Korea). All Sequencing pro-
cedure was performed with the HiSeq2000 platform by 
Macrogen (Seoul, South Korea). 101 bp paired-end reads 
were generated. All reads were trimmed sequencially 
by Trim Galore (options, −-clip_R1 10 --three_prime_
clip_R1 5) and Trimmomatic (options, SE -threads 16 
SLIDINGWINDOW:2:20 MINLEN:40). Then, by using 
Bismark with bowtie2, WGBS reads of Col and Cvi were 
mapped to the TAIR10 genome without allowing mis-
match. All of the other procedures were described in the 
previous paper [34].

RNA-Seq libraries were constructed using the TruSeq 
library preparation kit (Illumina) according to protocols 
provided by the manufacturer. For each stage of seeds 
from Col and Cvi, two biological replicates of RNA-Seq 
dataset were analyzed. Reads from Col samples were 
mapped to the TAIR10 reference genome sequence, 
and reads from Cvi sampled were mapped to the SNP-
replaced pseudo-Cvi TAIR10 genome using HISAT2 
with a non-strand-specific option [35]. Then, to perform 
reference-based transcript assembly and measure their 
raw read counts, mapped reads were passed to StringTie 
[36] and gffcompare [37]. FeatureCounts [38] were then 
used to measure expression level of genes in TAIR10 and 
assembled transcripts, and differential gene expression 
analysis was conducted using edgeR (glmQLFTest) [39].

Calculation of methylation levels and identification 
of differentially methylated regions (DMRs) 
and ecotype‑specific DMRs (eDMRs)
Factional methylation within 50 bp windows was calcu-
lated by the mean level of each cytosine without over-
lap. We used valid windows including at least 3 cytosines 
with minimal 10 reads aligned per each cytosine context 
as a window. For comparing methylation levels between 
ecotypes and during seed ripening and germination, 
we used windows valid within all of compared samples. 
Exceptionally, a 5 kb window including at least 10 sites 
of cytosine methylation context with more than 10 reads 
was used for chromosomal view.

In this paper, we defined eDMRs only in common 
region (CR) by comparing two samples at the same 
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stage with a methylation difference more than or less 
than a standard deviation from the mean of methyla-
tion difference using 50 bp windows satisfying the above 
conditions.

Common region (CR) and Col‑specific region (Col SR)
In this paper, two groups of regions were defined, com-
mon region (CR) and Col-specific region (Col SR), 
depending on the 100 bp mapping reads from bisulfite 
sequencing. If a 50 bp window satisfies the conditions of 
at least 3 cytosines with minimal 10 reads aligned per 
each cytosine context in both Col and Cvi, the window is 
included in CR. If a window satisfies the same conditions 
only in Col but not in Cvi, the window is included in Col 
SR.

Methylation level from genebody and transposable 
element
We used comparable genes and transposable elements 
(TEs), including at least 5 cytosine sites with a minimum 
of 10 reads. We sectioned four particular parts from the 
AR stage; methylated in Col but not Cvi (green), methyl-
ated in Cvi but not Col (pink), middle mC level in both 
ecotypes (cyan), and high mC level in both ecotypes 
(purple).

Identification of DNA sequence differences 
and methylation level of that
For identification of DNA sequence differences between 
Col (TAIR10) and Cvi (v2.0), we extracted SNPs and 
structural variations using MUMmer4 (https://​github.​
com/​mumme​r4/​mummer). The composition is counted 
using the number of overlapped windows. According 
to the number of SNPs, the fractional methylation level 
(50 bp) was calculated using only Col FH.

Small RNA clustering analysis and differential expression 
analysis
To generate small RNA clusters, filtered small RNA reads 
were mapped to reference genome sequence (Col for 
TAIR10; Cvi for pseudo-Cvi-TAIR10) with ShortStack -u 
mode (v3.8.5, mismatch: 0) [40], and then, 18-to-26 nt-
length reads from all libraries were clustered together 
(ShortStack clustering mode, -rpmm 1.0, -pad 75).

To measure small RNA reads between 20 and 24 nt 
for small RNA clusters and known microRNAs (miR-
base, v22), reads were split based on their coordinates 
and used with each bam file to measure reads. Next, 
reads were counted for all small RNA clusters using 
FeatureCounts (RSubread, read2pos = 5, fraction = T, 
countMultiMappingReads = T) [38]. Then, measured 
read counts were analyzed by edgeR package to per-
form normalization and differential expression analysis 

(glmQLFtest) [39]. Small RNA clusters were selected 
exhibiting FDR (< 0.05) in differential expression analy-
sis. To select significant differentially expressed small 
RNA clusters such as 24sRC loci in Fig. 2 and e24sRC 
loci in Fig.  3, fold-change level (≥ 2 fold) cut-off was 
additionally applied.

Permutation analysis
Overlap counting between two feature set was mainly 
conducted with bedtools intersect (v2.30.0) with default 
options. To perform randomization-based permuta-
tion test, overlapPermTest function in regioneR package 
(v1.26.1) was used (n  = 1000, non.overlapping = TRUE, 
per.chromosome = TRUE, count.once = TRUE) [41]. 
Query or compared regions, especially DMRs, were 
merged using bedtools merge (−d 1) before using as input 
dataset not to overestimate significance between com-
pared sets.
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