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bstract

G protein-coupled receptors (GPCRs) constitute the largest family of cell surface receptors and play a central role in cellular signaling pathways.
he importance of GPCRs has led to their becoming the targets of more than 50% of prescription drugs. However, drug compounds that do not
ifferentiate between receptor subtypes can have considerable side effects and efficacy problems. An accurate classification of GPCRs can solve
he side effect problems and raise the efficacy of drugs. Here, we introduce an approach that combines a fingerprint method, statistical profiles

nd physicochemical properties of transmembrane (TM) domains for a highly accurate classification of the receptors. The approach allows both
he recognition and classification for GPCRs at the subfamily and subtype level, and allows the identification of splice variants. We found that the
pproach demonstrates an overall accuracy of 97.88% for subfamily classification, and 94.57% for subtype classification.

2007 Elsevier Ltd. All rights reserved.
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. Introduction

G protein-coupled receptors (GPCRs) constitute the largest
amily of cell surface receptors, and play a central role in a cel-
ular signaling network that regulates many basic physiological
rocesses, such as secretion, neurotransmission, growth, cel-
ular differentiation and the immune response (Baldwin, 1994;
efkowitz, 2000). On account of a large diversity within the fam-

ly and the diverse roles in the cellular signaling pathways, the
eceptors have been heralded as therapeutic drug targets (Drews,
996; Marinissen and Gutkind, 2001).

GPCRs share a common functional unit in the form of seven
ransmembrane (TM) domains that are connected by alternat-
ng intracellular and extracellular loops (Baldwin, 1993; Gether,
000; Bjarnadottir et al., 2006). These receptors can be grouped

nto subfamilies according to their protein sequence homology,
he ligand structure, and receptor function (Horn et al., 2003)
Fig. 1). Somehow some relationship between the sequences
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f GPCRs and ligands of particular subfamilies seems to exist,
ut there is no clear correlation between sequence similarity
nd ligand-specificity (Papasaikas et al., 2003; Inoue et al.,
004). These evolutionary complexes of GPCRs in their fami-
ies have been the main obstacle to developing effective methods
or GPCR classification (Kim et al., 2000). In this report, we
escribe a new combined approach for the identification and
lassification of GPCRs from a large-scale genomic database.

Several research groups have developed methods for the
ecognition and classification of the receptors (Elrod and Chou,
002; Karchin et al., 2002; Papasaikas et al., 2003; Huang et
l., 2004; Bhasin and Raghava, 2005). Although their methods
re useful, there are three problems in applying these meth-
ds to a large protein family. First, most research groups did
ot succeed in the classification of different subtypes of recep-
ors belonging to one subfamily and only concentrated on the
ubfamily level. Second and more importantly, the investigators
ave failed to include methods for detecting splice variants of
he receptors in their classification strategies. A highly accurate
ubdivision of subfamily and detection of splice variants are

mportant for developing drugs and solving the problem of side
ffects (Bhasin and Raghava, 2005). Lastly, several methods are
oo computationally expensive to apply directly to whole GPCR
amilies.
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ig. 1. Schematic view of the GPCR family tree. These classifications were
aken from the GPCRDB information system (Horn et al., 2003).

Here, we describe a novel approach that overcomes the above
roblems and its application for identifying novel splice variants
n the tissue-specific genomic database, TISA (Noh et al., 2006).
or coping with the evolutionary complexes of the receptors and

o enhance the diagnostic power of the approach, the fingerprint
ethod, which uses TM domains for building diagnostic sig-

atures, was adopted. Recently, Gaulton and Attwood (2003)
howed a diagnostic sensitivity of the fingerprint method in pro-
ein classification, and Sadka and Linial (2005) introduced a
orte of TM domains in characterizing membranous proteins.

ith the fingerprints, profile hidden Markov models (HMMs),
hich excel at recognizing the weak similarity between mem-
ers, and also the physicochemical properties of amino acids are
ombined to enhance the descriptive power of the approach.

We constructed a transmembrane-hidden Markov model-
ibrary (TM-HMM-Library) for identifying and classifying the

eceptors into subfamilies and adopted Grantham’s physico-
hemical distances of amino acids for subdividing the GPCRs
nto subtypes (Grantham, 1974; Graur and Li, 2000). With the
ombined approach, we show its performance with a test set,
nd then illustrate its utility in the identification of novel splice
ariants.

. Materials and methods

.1. Dataset

The GPCR dataset used for training and evaluating
he method was extracted from SwissProt (Release 50.0,
ww.expasy.org/cgi-bin/lists?7tmrlist.txt; Boeckmann et al.,
003) based on the following two conditions: description of
Mammalia” in the OC line and no description of “Fragment” in
he DE line. Finally, 1021 protein sequences were obtained and
lassified based on GPCRDB (Release 9.0; Horn et al., 2003), as

hown in Table 1 . The dataset was arranged into six classes and
ubdivided into 89 subfamilies. We also extracted 1021 decoy
egative protein sequences, which have “TRANSMEM” in the
T lines but do not belong to GPCR family, from SwissProt and
dded them to the dataset for evaluating the method.
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.2. GPCR subfamily classification (construction of the
M-HMM-Library)

The subfamily classification scheme in GPCRDB is defined
y the chemical difference of ligands rather than the receptor
equence homology. Many Level 2 subfamilies belonging to the
ame Level 1 subfamily show highly low sequence similarity
hat may be the result of convergent evolution (Karchin et al.,
002). For these reasons, some Level 1 subfamilies are subdi-
ided into subtypes, which are specific in terms of function,
ia Level 2 subfamilies (e.g. Level 1 subfamily (amine) > Level
subfamily (muscarinic acetylcholine) > subtype (muscarinic

cetylcholine vertebrate type 1)) and other Level 1 subfamilies
re subdivided directly into subtypes (e.g. Level 1 subfamily
latrophilin) > subtype (latrophilin type 1)) (Fig. 1). Reflecting
n these characteristics of the receptor subfamilies, we decided
o partition the 1021 sequences into subsets of 89 subfamilies
ccording to Level 2 subfamilies, and Level 1 subfamilies, which
o not have Level 2 subfamilies, for constructing the classifica-
ion method.

The main goal of this step was to develop the method
or recognizing and classifying GPCRs into subfamilies. For
onstructing the TM-HMM-Library, a multiple sequence align-
ent was constructed for each subset of GPCR subfamilies,

sing ClustalW 1.83 (Thompson et al., 1994) and seven TM
omains were extracted from each subset. Then 623 (=89 sub-
amilies × 7 TMs) profile HMM were built with the HMMER
er.2.3.2 package by using the program hmmbuild and option
A, and the TM-HMM-Library was calibrated using the pro-
ram hmmcalibrate (Eddy, 1998) (Fig. 2). The performance of
he TM-HMM-Library as a subfamily level classifier was esti-

ated after an hmmpfam-search for TM domains in a query
equence against an HMM Library (Eddy, 1998). The hmmpfam
rogram of the HMMER software package reads a sequence file
nd compares each sequence in it, one at a time, against all of the
MMs in the TM-HMM-Library to look for significantly sim-

lar sequence matches. From the output report for each query
equence, which reports the best scoring domains in order of
heir occurrence in the sequence, the query sequence can be
lassified into the correct subfamily.

.3. Performance evaluation (n-fold cross-validation)

In order to evaluate the performance of the approach, we used
n n-fold cross-validation. This experiment, which requires n
embers per subfamily, is problematic for a subfamily exper-

ment, due to the large number of subfamilies, many of which
re sparsely populated (Karchin et al., 2002). In this study, we
ecided on a 5-fold cross-validation for the subfamily classifica-
ion experiment, in which the dataset of all GPCRs sequences is
ivided into five subsets of approximately equal size. The TM-
MM-Library has trained the net five times, each time leaving
ut one of the subsets from the training. The remaining subset for

ach time is used to estimate the performance of the trained TM-
MM-Library. We also added the same size negative sequences,
hich are non-GPCR transmembrane proteins, to each subset

or estimating specificity. For identifying the optimal threshold,

http://www.expasy.org/cgi-bin/lists%3F7tmrlist.txt
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Table 1
Details of the dataset used for training and evaluating the method

Class/subfamily Species (mammal) Total

Human Mouse Rat Othersa

Class A: Rhodopsin-like 235 210 163 194 802
Muscarinic acetylcholine 5 4 5 6 20
Alpha adrenoceptors 6 6 6 8 26
Beta adrenoceptors 3 3 3 6 15
Dopamine 5 5 5 5 20
Histamine 4 3 3 5 15
Serotonin 12 12 12 12 48
Trace amine 5 10 13 2 30
Angiotensin 2 3 3 2 10
Bombesin 3 3 2 3 11
Bradykinin 2 2 2 4 10
C5a anaphylatoxin 3 2 2 3 10
Fmet-leu-phe 3 2 0 2 7
APJ-like 1 1 1 1 4
Interleukin-8 2 1 2 5 10
C-C chemokine 12 12 4 8 36
C-X-C chemokine 4 3 2 6 15
C-X3-C chemokine 2 2 1 0 5
Cholecystokinin CCK 2 2 2 4 10
Endothelin 2 2 2 4 10
Melanocortin 5 5 3 10 23
Duffy antigen 1 1 0 3 5
Neuropeptide Y 5 6 2 9 22
Neurotensin 2 2 2 0 6
Opioid 4 4 4 5 17
Somatostatin 5 5 5 2 17
Tachykinin 3 3 3 5 14
Vasopressin/vasotocin 3 3 3 4 13
Oxytocin/mesotocin 1 1 1 2 5
Galanin 3 3 3 0 9
Thrombin 1 1 1 2 5
Proteinase-activated 3 3 3 0 9
Orexin 2 1 2 1 6
Neuropeptide FF 2 1 2 0 5
Urotensin II 1 1 1 1 4
GPR37/endothelin B-like 2 2 1 0 5
Chemokine receptor-like 4 3 2 0 9
Neuromedin U-like 2 2 2 0 6
Somatostatin- and angiogenin-like peptide 2 2 0 0 4
Melanin-concentrating hormone receptors 2 1 0 2 5
Prokineticin receptors 2 2 2 2 8
Follicle stimulating hormone 1 1 1 2 5
Lutropin-choriogonadotropic hormone 1 1 1 2 5
Thyrotropin 1 1 1 2 5
Rhodopsin vertebrate 4 3 3 7 17
Rhodopsin Other 4 4 0 1 9
Prostaglandin 6 6 5 7 24
Prostacyclin 1 1 1 1 4
Thromboxane 1 1 1 2 5
Adenosine 4 4 4 6 18
Purinoceptors 16 11 6 3 36
Cannabinoid 2 2 2 1 7
Platelet activating factor 1 1 1 1 4
Gonadotropin-releasing hormone 2 1 1 5 9
Thyrotropin-releasing hormone 1 1 1 2 5
Growth hormone secretagogue 1 1 1 1 4
Melatonin 3 3 0 3 9
Lysosphingolipid and LPA (EDG) 7 7 4 3 21
Leukotriene B4 receptor 2 2 2 0 6
SREB 3 3 3 0 9
Mas proto-oncogene and Mas-related (MRGs) 10 12 6 0 28
RDC1 1 1 1 1 4
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Table 1 ( Continued )

Class/subfamily Species (mammal) Total

Human Mouse Rat Othersa

LGR-like (hormone receptors) 5 2 1 0 8
GPR 17 4 3 8 32
GPR45-like 2 2 0 0 4
Cysteinyl leukotriene 2 2 2 2 8
Free fatty acid receptor (GP40, GP41, GP43) 4 3 0 0 7

Class B: Secretin-like 29 23 18 13 83
Calcitonin 2 2 2 2 8
Corticotropin releasing factor 2 2 2 1 7
Glucagon 3 2 3 0 8
Growth hormone-releasing hormone 1 1 1 1 4
Parathyroid hormone 2 2 2 2 8
PACAP 1 1 1 1 4
Secretin 1 1 1 1 4
Vasoactive intestinal polypeptide 2 2 2 1 7
EMR1 5 3 0 1 9
Latrophilin 4 1 3 3 11
Brain-specific angiogenesis inhibitor (BAI) 3 3 0 0 6
Cadherin EGF LAG (CELSR) 3 3 1 0 7

Class C: Metabotropic glutamate/pheromone 18 12 14 3 47
Metabotropic glutamate group I 2 1 2 0 5
Metabotropic glutamate group II 2 1 2 0 5
Metabotropic glutamate group III 4 1 4 0 9
Extracellular calcium-sensing 1 1 1 1 4
GABA-B 2 1 2 0 5
Orphan GPRC5 4 4 0 0 8
Taste receptors (T1R) 3 3 3 2 11

Frizzled/smoothened family 10 10 3 0 23
Frizzled group A (Fz 1, 2, 4, 5, 7–9) 8 8 3 0 19
Frizzled group B (Fz 3 and 6) 2 2 0 0 4

Vomeronasal receptors (V1R and V3R) 5 0 0 4 9
Taste receptors T2R 25 10 6 16 57

Total 322 265 204 230 1021

The classification is based on GPCRDB (Release 9.0).
a Others include Sus scrofa (pig, 35 sequences), Bos Taurus (bovine, 51), Macaca mulatta (rhesus macaque, 22), Cavia porcellus (guinea pig, 20), etc.

Fig. 2. Schematic diagram of the GPCR subfamily classification algorithm based on the information of the TM domains. The hmmpfam in the HMMER package
reads a sequence file and compares each sequence in it against all of the HMMs in the TM-HMM-Library. For generating a single majority-rule consensus in
each subfamily, which used for the classification of GPCRs into its subtypes, the program hmmemit, and option –C was applied and Consensus-TM-Library was
constructed. (1) Multiple sequence alignment.
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Table 2
Physicochemical distances for each amino acid pair

Arg Leu Pro Thr Ala Val Gly Ile Phe Tyr Cys His Gln Asn Lys Asp Glu Met Trp
R L P T A V G I F Y C H Q N K D E M W

110 145 74 58 99 124 56 142 155 144 112 89 68 46 121 65 80 135 177 Ser S
102 103 71 112 96 125 97 97 77 180 29 43 86 26 96 54 91 101 Arg R

98 92 96 32 138 5 22 36 198 99 113 153 107 172 138 15 61 Leu L
38 27 68 42 95 114 110 169 77 76 91 103 108 93 87 147 Pro P

58 69 59 89 103 92 149 47 42 65 78 85 63 81 128 Thr T
64 60 94 113 112 195 86 91 111 106 126 107 84 148 Ala A

109 29 50 55 192 84 96 133 97 152 121 21 88 Val V
135 153 147 159 98 87 80 127 94 98 127 184 Gly G

21 33 198 94 109 149 102 168 134 10 61 Ile I
22 205 100 116 158 102 177 140 28 40 Phe F

194 83 99 143 85 160 122 36 37 Tyr Y
174 154 139 202 154 170 196 215 Cys C

24 68 32 81 40 87 115 His H
46 53 61 29 101 130 Gln Q

94 23 42 142 174 Asn N
101 56 95 110 Lys K

45 160 181 Asp D
126 152 Glu E
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ean chemical distance is 100.

he performance of the method was estimated using different
alues of a threshold parameter (0.0001, 0.001, 0.01, and 0.1)
nd the performance quality was evaluated by the accuracy
nd Matthew’s correlation coefficient (MCC) (Matthews, 1975)
Table 4). The performance qualities of each subfamily in the
ptimal threshold were evaluated by the determination of the
ensitivity, specificity, and accuracy.

.4. GPCR subtype classification

Only highly accurate identification of receptor subtypes can
olve the problem of efficacy and side effects of various drugs
Bhasin and Raghava, 2005). The replacements of amino acids
y divergent evolution or the distinct usages of amino acids by
onvergent evolution, which were separately adopted in each
ubtype, produced subtle or lots of sequence differences in many
egions among them. For coping with the complex evolutionary
ackground of each subtype, the second step aimed at subdi-
iding GPCR subfamily adopts Grantham’s physicochemical
istances between amino acids, which based on the properties
f amino acids such as polarity, molecular volume, and chemical
omposition (Grantham, 1974; Graur and Li, 2000) (Table 2). A
eplacement of an amino acid by a similar one, which is called
conservative replacement, is indicated by small distance, and
replacement of an amino acid by a dissimilar one is called a

adical replacement and indicated by large distance (Grantham,
974; Graur and Li, 2000). If there is a pair of amino acid
equences, a numerical vector can be produced by Grantham’s

hysicochemical distances between them.

T Y I T L E L V I A . . .

58 0 0 59 5 0 32 32 0 0 . . .

A Y I G I E V L I A . . .

u
f
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a

67 Met M

From the consensus TM sequences in each subfamily, which
ere constructed using the HMMER ver.2.3.2 package, the
rogram hmmemit, and option –C (Eddy, 1998) (Fig. 2), the
umerical vectors of each of the subtypes and query sequence
an be obtained and the strength of the linear relationships
etween each subtype and query sequence can be calculated
y the Pearson correlation coefficient, R (Table 3). R2 close to
indicates a strong linear relationship; values close to 0 a weak
ne. The query sequence in Table 3 shows a strong relationship
ith Adenosine subtype 1 (AA1R), indicating the reasonable-
ess of locating the query sequence in the Adenosine subtype 1
AA1R) (Figs. 3 and 4).

=
∑

(Xi − X̄)(Yi − Ȳ )√∑
(Xi − X̄)2 ∑

(Yi − Ȳ )2

here Xi is the physicochemical distance between ith residue
f query sequence and ith residue of consensus sequence and Yi

s the physicochemical distance between ith residue of subtype
equence and ith residue of consensus sequence.

. Results and discussion

.1. TM-HMM-Library thresholds selection and GPCR
ubfamily classification

The procedure for constructing the TM-HMM-Library and
ts application for classifying GPCRs into the subfamily level is
llustrated in Fig. 2. The performance of the method was eval-
ated through 5-fold cross-validation and was estimated using

our different E-value thresholds. The results are summarized
n Table 4 which give the sensitivity, specificity, accuracy and

CC of classification for each different E-value threshold. The
ccuracy and MCC of the method reached 97.88% and 0.96,
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Table 3
The numerical vectors of each subtype and query TM sequence

Consensus sequence (adenosine subfamily
TM1): TYITLELVIALLAVVGNVLV

R2 (R)

Query TM1 (adenosine subfamily): AYIGIEVLIALVSVPGNVLV 58,0,0,59,5,0,32,32,0,0,0,32,99,0,68,0,0,0,0,0 –
Adenosine subtype 1 (AA1R) TM1: AYIGIEVLIALVSVPGNVLV 58,0,0,59,5,0,32,32,0,0,0,32,98,0,68,0,0,0,0,0 1a (1)
Adenosine subtype 2 (AA2AR) TM1: VYITVELAIAVLAILGNVLV 69,0,0,0,32,0,0,64,0,0,32,0,0,29,32,0,0,0,0,0 0.07303876b (0.2702568)
Adenosine subtype 2 (AA2BR) TM1: LYVALELVIAALAVAGNVLV 92,0,29,58,0,0,0,0,0,0,96,0,0,0,64,0,0,0,0,0 0.1263553c (0.3554649)
Adenosine subtype 3 (AA3R) TM1: TYITMEAAIGLCAVVGNMLV 0,0,0,0,15,0,96,64,0,60,0,198,0,0,0,0,0,21,0,0 0.00988843d (0.09944062)

a Linear relationship between query and adenosine subtype 1 (AA1R).
b Linear relationship between query and adenosine subtype 2 (AA2AR).
c Linear relationship between query and adenosine subtype 2 (AA2BR).
d Linear relationship between query and adenosine subtype 3 (AA3R).
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ig. 3. Linear relationships between each subtype and query TM 1 sequence.
etween query and subtype, AA1R, is seen.
espectively, at a threshold value of 0.01. The results show the
igh discriminative capacity of the method in distinguishing
PCRs from other non-GPCR transmembrane proteins and in

he classification of GPCRs into subfamilies. We selected an E-

ig. 4. Histogram of Pearson correlation coefficient, R2, between each subtype
nd query. The histogram shows a high correlation relationship between query
nd AA1R subtype.
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upper left scatter plot, the points fall on a straight line; a strong relationship

alue threshold equal to 0.01 for subfamily classification and
ubsequence analysis.
The detailed results of the 5-fold cross-validation experi-
ents at a threshold value of 0.01 are summarized in Table 5
hich give the sensitivity, specificity and Acc for each sub-

amily. A fair number of subfamilies were classified perfectly

able 4
he performance of the TM-HMM-Library in recognizing and classifying the
PCRs at different thresholds

hresholda Sensitivity Specificity Acc MCC

.0001 93.00 100 96.50 0.93

.001 95.25 100 97.63 0.95

.01 96.75 99.00 97.88 0.96

.1 96.75 95.50 96.13 0.92

cc, accuracy; MCC, Matthew’s correlation coefficient.
a Hits with E-values better than the threshold are detected.
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Table 5
The performance of the combined approach in classifying the GPCRs at the subfamily and subtype levels

Subfamily Subfamily level Subtype level

Sena Speb Accc Sen

Muscarinic acetylcholine 1.00 1.00 1.00 1.00
Alpha adrenoceptors 1.00 1.00 1.00 1.00
Beta adrenoceptors 1.00 1.00 1.00 1.00
Dopamine 1.00 1.00 1.00 0.83
Histamine 1.00 1.00 1.00 1.00
Serotonin 1.00 0.86 0.93 1.00
Trace amine 1.00 1.00 1.00 1.00
Angiotensin 1.00 1.00 1.00 0.50
Bombesin 1.00 1.00 1.00 1.00
Bradykinin 1.00 1.00 1.00 1.00
C5a anaphylatoxin 1.00 1.00 1.00 1.00
Fmet-leu-phe 1.00 1.00 1.00 1.00
APJ-like 1.00 1.00 1.00 1.00
Interleukin-8 1.00 1.00 1.00 0.83
C-C chemokine 0.86 1.00 0.93 0.83
C-X-C chemokine 1.00 1.00 1.00 1.00
C-X3-C chemokine 1.00 1.00 1.00 0.33
Cholecystokinin CCK 1.00 1.00 1.00 1.00
Endothelin 1.00 1.00 1.00 1.00
Melanocortin 1.00 1.00 1.00 1.00
Duffy antigen 1.00 1.00 1.00 1.00
Neuropeptide Y 1.00 1.00 1.00 1.00
Neurotensin 1.00 0.67 0.82 1.00
Opioid 1.00 1.00 1.00 1.00
Somatostatin 1.00 1.00 1.00 1.00
Tachykinin 1.00 1.00 1.00 1.00
Vasopressin/vasotocin 1.00 1.00 1.00 1.00
Oxytocin/mesotocin 1.00 1.00 1.00 1.00
Galanin 1.00 1.00 1.00 1.00
Thrombin 1.00 1.00 1.00 1.00
Proteinase-activated 1.00 1.00 1.00 1.00
Orexin 1.00 1.00 1.00 1.00
Neuropeptide FF 1.00 1.00 1.00 1.00
Urotensin II 1.00 1.00 1.00 1.00
GPR37/endothelin B-like 1.00 1.00 1.00 1.00
Chemokine receptor-like 1.00 1.00 1.00 1.00
Neuromedin U-like 1.00 1.00 1.00 1.00
Somatostatin- and angiogenin-like peptide 1.00 1.00 1.00 1.00
Melanin-concentrating hormone receptors 1.00 1.00 1.00 1.00
Prokineticin receptors 1.00 1.00 1.00 1.00
Follicle stimulating hormone 1.00 1.00 1.00 1.00
Lutropin-choriogonadotropic hormone 0.50 1.00 0.71 1.00
Thyrotropin 1.00 1.00 1.00 1.00
Rhodopsin vertebrate 1.00 1.00 1.00 1.00
Rhodopsin Other 0.40 1.00 0.63 1.00
Prostaglandin 1.00 1.00 1.00 0.89
Prostacyclin 1.00 1.00 1.00 1.00
Thromboxane 1.00 1.00 1.00 1.00
Adenosine 1.00 1.00 1.00 1.00
Purinoceptors 1.00 1.00 1.00 1.00
Cannabinoid 1.00 1.00 1.00 1.00
Platelet activating factor 1.00 1.00 1.00 1.00
Gonadotropin-releasing hormone 1.00 1.00 1.00 1.00
Thyrotropin-releasing hormone 1.00 1.00 1.00 1.00
Growth hormone secretagogue 1.00 1.00 1.00 1.00
Melatonin 1.00 1.00 1.00 1.00
Lysosphingolipid and LPA (EDG) 1.00 1.00 1.00 1.00
Leukotriene B4 receptor 1.00 1.00 1.00 1.00
SREB 1.00 1.00 1.00 1.00
Mas proto-oncogene and Mas-related (MRGs) 1.00 1.00 1.00 1.00
RDC1 1.00 1.00 1.00 1.00
LGR-like (hormone receptors) 1.00 1.00 1.00 1.00
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Table 5 ( Continued )

Subfamily Subfamily level Subtype level

Sena Speb Accc Sen

GPR 0.15 1.00 0.39 1.00
GPR45-like 1.00 1.00 1.00 1.00
Cysteinyl leukotriene 1.00 1.00 1.00 1.00
Free fatty acid receptor (GP40, GP41, GP43) 1.00 1.00 1.00 1.00
Calcitonin 1.00 1.00 1.00 1.00
Corticotropin releasing factor 1.00 1.00 1.00 1.00
Glucagon 1.00 1.00 1.00 1.00
Growth hormone-releasing hormone 1.00 1.00 1.00 1.00
Parathyroid hormone 1.00 1.00 1.00 1.00
PACAP 1.00 1.00 1.00 1.00
Secretin 1.00 1.00 1.00 0.67
Vasoactive intestinal polypeptide 1.00 1.00 1.00 1.00
EMR1 1.00 0.67 0.82 1.00
Latrophilin 1.00 1.00 1.00 1.00
Brain-specific angiogenesis inhibitor (BAI) 1.00 1.00 1.00 0.67
Cadherin EGF LAG (CELSR) 1.00 1.00 1.00 1.00
Metabotropic glutamate group I 1.00 1.00 1.00 1.00
Metabotropic glutamate group II 1.00 1.00 1.00 1.00
Metabotropic glutamate group III 1.00 1.00 1.00 0.67
Extracellular calcium-sensing 1.00 1.00 1.00 1.00
GABA-B 1.00 1.00 1.00 1.00
Orphan GPRC5 1.00 1.00 1.00 1.00
Taste receptors (T1R) 1.00 1.00 1.00 1.00
Frizzled Group A (Fz 1, 2, 4, 5, 7–9) 1.00 1.00 1.00 0.33
Frizzled Group B (Fz 3 and 6) 1.00 1.00 1.00 1.00
Vomeronasal receptors (V1R and V3R) 1.00 0.80 0.89 1.00
Taste receptors T2R 0.86 1.00 0.93 1.00
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a Sensitivity.
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c Accuracy.

ith a 100% success rate and six subfamilies, i.e., serotonin,
-C chemokine, neurotensin, EMR1, vomeronasal receptors
nd taste receptors T2R, were classified with success rates
igher than 80%. In the case of three subfamilies, i.e., Lutropin-
horiogonadotropic hormone, Rhodopsin Other and GPR, a
erfect specificity of 100% was seen, but with recorded low
ensitivities of 0.5, 0.4 and 0.15, respectively. About half of the
utropin-choriogonadotropic hormone receptors were classified

nto other subfamilies, including follicle stimulating hormone or

hyrotropin belonging to the same hormone receptor group. The
PR subfamily belonging to the Class A Orphan/other group

nclude so many kinds of subtypes; the diffuseness in the GPR
ubfamily lowered the sensitivity.

a
G
a
t

able 6
he performance of the covariant discriminant algorithm, bagging classification tree,

mine receptors CovDisa Baggingb

Acc Acc MCC

cetylcholine 67.7 96.8 0.94
drenoceptor 88.6 90.9 0.82
opamine 81.6 84.2 0.73
erotonin 88.9 81.5 0.77
verall 83.2 87.4

a Covariant discriminant algorithm (Elrod and Chou, 2002).
b Bagging classification tree (Huang et al., 2004).
c GPCRsclass (Bhasin and Raghava, 2005).
.2. Performance comparison of GPCR classifiers

In order to ascertain the quality of our approach, we compared
ur scheme with three published methods, namely the covariant
iscriminant algorithm by Elrod and Chou (2002), the bagging
lassification tree by Huang et al. (2004) and the support vector
achine (SVM) by Bhasin and Raghava (2005). To guarantee

n objective comparison, we also applied our scheme to the
ataset described by Elrod and Chou (2002) in the same manner

s the above methods. The amine family dataset include 167
PCRs, of which 31 are acetylcholine, 44 are adrenoceptors, 38

re dopamine and 54 are serotonin types. As shown in Table 6,
he overall accuracy of the TM-HMM-Library is similar to the

GPCRsclass and TM-HMM-Library in classifying the amine receptors

GPCRsclassc TM-HMM-Library

Acc MCC Acc MCC

93.6 0.96 100 1
100 0.93 94.2 0.88

92.1 0.95 97.4 0.95
98.2 0.97 96.3 0.93
96.4 0.95 96.6 0.93
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Table 7
The number of novel candidates with the previously known isoforms detected in the TISA database

Class Subfamily Subtype Knowna Novelb Species

A Histamine HRH3 5 2 Human

Serotonin 5HT4R 5 1 Human
5HT7R 1 1 Mouse

Fmet-leu-phe FPRL1 1 2 Mouse
APJ-like APJ 1 1 Human
C-X-C chemokine CXCR3 1 1 Human
Cholecystokinin CCK CCKAR 1 1 Mouse
Endothelin EDNRA 3 1 Human
Melanocortin MSHR 1 1 Human
Duffy antigen Duffy 1 1 Mouse
Neuropeptide Y NPY2R 1 1 Mouse
Neurotensin NTR2 1 1 Mouse

Opioid OPRM 3 4 Human
OPRX 4 (4) 1 (7) Human (mouse)

Vasopressin/vasotocin V2R 1 (1) 1 (1) Human (mouse)
Proteinase-activated-like PAR2 1 1 Mouse

Orexin OX1R 2 2 Human
NPFF2 2 2 Human

Melanin-concentrating hormone receptors MCHR1 1 1 Human

Rhodopsin vertebrate OPSB 1 2 Mouse
OPSD 1 3 Mouse
OPSG 1 5 Mouse

Rhodopsin Other OPSX 3 1 Mouse
RGR 3 (1) 1 (3) Human (mouse)

Prostaglandin PE2R1 1 1 Mouse
PE2R4 2 2 Mouse

Adenosine AA1R 4 1 Human
AA3R 2 (1) 1 (1) Human (mouse)

Purinoceptors P2RY6 6 1 Human
P2Y10 3 1 Human

Gonadotropin-releasing hormone GNRHR 1 1 Mouse
Lysosphingolipid and LPA (EDG) EDG7 1 1 Human
Leukotriene B4 receptor LT4R1 1 1 Mouse

LGR-like RXFP1 1 2 Human
LGR4 2 1 Human
LGR8 1 1 Human

GPR GPR19 7 1 Mouse

B Secretin SCTR 1 1 Mouse

Vasoactive intestinal polypeptide VIPR1 2 1 Human
VIPR2 2 2 Human

EMR1 EMR1 2 5 Mouse
Latrophilin LPHN2 5 4 Human

Brain-specific angiogenesis inhibitor (BAI) BAI1 2 5 Mouse
BAI2 2 (2) 5 (5) Human (mouse)
BAI3 3 (2) 1 (2) Human (mouse)

Cadherin EGF LAG (CELSR) CELR2 2 4 Human

C Metabotropic glutamate group III MGR4 2 3 Human
MGR7 3 1 Human

GABA-B GABR1 4 1 Human

GPRC5 GPC5C 3 7 Human
RAI3 1 1 Human

Taste receptors (T1R) TS1R2 1 1 Mouse

Tc Taste receptors T2R T2R14 1 2 Human
a Previously known GPCRs detected in TISA.
b Novel candidate splice variants detected in TISA.
c Taste receptors T2R.
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uccess rate of GPCRsclass with 96.6%, and higher than both the
ovariant discriminant algorithm and bagging classification tree.
s for the adrenoceptor and serotonin receptors, the accuracy is
.8 and 1.9% lower than that of GPCRsclass. Although their web
ool GPCRsclass showed a higher accuracy for the adrenoceptor
nd serotonin receptors in the comparison test, unlike the TM-
MM-Library that can be applied to the whole GPCR family, the

pplication of GPCRsclass is only limited to the classification of
he amine family. The comparison study indicates that the TM-
MM-Library can be applied to the recognition of the GPCR

ubfamily with high discriminative potency.

.3. GPCR subtype classification

The results of the 5-fold cross-validation experiments clas-
ifying the test set into subfamilies appear in Tables 4 and 5.
e designed our subtype experiment with the test set correctly

lassified into its subfamilies. The overall classification sensitiv-
ty of the subtype experiment reached 94.57% and the detailed
esults are shown in Table 5. The scatter plots and histograms in
igs. 3 and 4 indicate the results of the subtype experiment of the

est sequence (AA1R RAT) and show that a strong relationship
etween the test sequence and the subtype, AA1R (Table 3).
he strong point of the classification algorithm is that it can also
how a high discriminative potency in the recognition of the
runcated forms caused by alternative splicing.

.4. Identification of novel splice variants

Encouraged by the performance of the combined approach,
e decided to apply the scheme to discover novel GPCR splice
ariants in a list of human and mouse transcript isoforms. In a
revious study, we had performed in silico approach, i.e. a splice
raph analysis based on a genomic cluster of mRNA/ESTs to
enerate a full spectrum of possible transcript variants of human
nd mouse. As a result, we obtained 97,286 and 66,022 valid
ranscripts from 26,143 human and 27,741 mouse genes, respec-
ively. In addition, we tested the tissue-specificity of each gene
nd transcript isoform statistically based on library tissue infor-
ation of the clustered ESTs. By integrating the information

f alternative splicing and tissue-specificity of genes and tran-
cripts, we have developed the tissue-specific alternative splicing
TISA) database (http://tisa.kribb.re.kr/AGC/) (for a description
f the splice graph and transcript reconstruction methods in
etail, please refer to Noh et al., 2006). Based on 97,286 human
nd 66,022 mouse transcripts, protein sequences were deduced
y choosing the maximum length ORFs among all possible three
rame translations from their corresponding RNA sequences.

Using the combined approach, 563 human transcripts and 435
ouse transcripts, which were generated from 305 human genes

nd 259 mouse genes, respectively, were identified as encod-
ng GPCRs and classified into their subtypes. From these 998
rotein sequences, we searched for novel splice variants which

iffered from previously known proteins in the splicing pattern
f their genomic alignment structures that caused any differences
n the protein coding region such as domain/motif insertion,
eletion, substitution, and N-terminal and/or C-terminal trunca-

K
(
n

nd Chemistry 31 (2007) 246–256 255

ion. Splicing variants, which cause alternations only in the 5′ or
′ UTR were ignored. We found 60 human transcript isoforms
nd 56 mouse transcript isoforms, which were generated from
3 human genes and 26 mouse genes, respectively, as candidates
f novel splice variants and confirmed their novelty by querying
16 protein sequence against the GenBank nr-protein database
09/2006) with the BLASTP program (version 2.2.14), which
ave a no match result to the already known protein entries.
able 7 shows the number of novel candidates in each GPCR
ubtype with the previously known transcripts detected in the
ISA database. A complete list of the novel candidates with the

llustrated figures showing the alternative splicing patterns and
ifferences in the coding regions that are compared to known iso-
orm(s) for each gene unit is available in Supplementary data and
he detailed descriptions are linked directly through the TISA
atabase.

We have introduced here an approach for the recognition
nd classification of GPCRs with novel candidate splice vari-
nts. The classifier combining fingerprint, statistical profiles and
hysicochemical properties of TM domains shows a higher accu-
acy of 97.88% for subfamily classification, and 94.57% for
ubtype classification. A comparative experiment, which was
pplied to the classification of amine receptors, also showed
strong power of our approach. A good performance in the

lassification of the receptors motivated us to explore novel can-
idate splice variants that differed in particular intracellular and
xtracellular domains. The functional distinction of the receptor
soforms by different tissue-specific distribution, ligand-binding
rofile and coupling efficiency to G protein has been previ-
usly reported (Kilpatrick et al., 1999; Minneman, 2001). To
ur knowledge, this is the first attempt to identify potential splice
ariants by a computational approach and from the application
f the method to the TISA database, 116 novel candidates were
dentified from a list of human and mouse transcript isoforms of
he TISA database. Table 7 lists the number of novel candidates
or each GPCR subtype with the previously known transcripts
hat were also detected in this study, and Supplementary data
hows their alternative patterns and more detailed information.

The GPCR classification experiment, which places the recep-
ors into functionally related subfamilies and subtypes, is beyond

ere academic curiosity. The central role of the receptors in
egulating crucial cellular processes form a major part of the
ajor pathophysiological conditions, including cardiovascular

isease and cancer, and has placed them in the pharmaceutical
potlight. Consequently, GPCR classification algorithms locat-
ng the receptors into correct subfamilies and subtypes can be
sed to help identify and characterize receptors. Thus, the com-
ined approach can be complementary to the characterization
f GPCRs and thereby may be useful for discerning side effects
nd efficacy problems and should facilitate drug discovery.
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