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Abstract

To elucidate the function of PLCg1, we have investigated the proteins that bind to its SH (Src homology) domain. Immunoscreening
was performed with purified antisera specific for SH223 (two SH2 and one SH3)-binding proteins. Several immunoreactive clones
were identified as putative binding proteins and one of them was identified as synapsin IIb. We demonstrate a stable association

between PLCg1 and synapsin IIb, which binds the carboxyl terminal SH2 and SH3 domains of the enzyme and inhibits it.
� 2004 International Federation for Cell Biology. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Inositol phospholipid-specific phospholipase C (PLC)
is one of the main regulatory enzymes in receptor-
mediated signaling pathways and is involved in regulat-
ing many cellular events including proliferation and
differentiation (Ji et al., 1997). Activated PLC catalyzes
the hydrolysis of phosphatidylinositol 4,5-bisphosphate
(PIP2), generating two intracellular messengers, diacyl-
glycerol and 1,4,5-triphosphate, which respectively
mediate the activation of protein kinase C (PKC) and
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intracellular Ca2C ion release. Among the 11 mamma-
lian PLC isozymes identified to date, only PLCg has two
SH2 (Src homology 2) domains (designated N-terminal
and C-terminal domains) and one SH3 (Src homology 3)
domain located between the catalytic X and Y domains.
These domains are known to facilitate the PLCg
association with other proteins. The SH2 domains
recognize phosphotyrosine sequences in other proteins
(Gergel et al., 1994; Pawson, 1994; Sillman and Monroe,
1995; Vallius et al., 1995; Yablonski et al., 1998; Paulin
et al., 2000), while the SH3 domain mediate interactions
with proteins containing proline-rich sequences (PXXP
motif) (Pawson and Nash, 2000).

Many proteins participate in PLCg1-mediated signal
transduction through interaction with these domains
(Rhee and Choi, 1992). SH2 and SH3 domains are
found in many other signaling proteins involved in
diverse cellular events such as mitogenesis and are
involved in interaction with other proteins (Bae et al.,
1998; Pawson, 1995).
iology. Published by Elsevier Ltd. All rights reserved.
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Several tyrosine kinase substrates or adapter proteins
(e.g., PLCg1, SHP, and p85) have two SH2 domains,
but this is not an essential feature since others (e.g.,
Grb2, NCK, and STAT) have single SH2 domains. The
presence of two distinct SH2 domains in PLCg1 may be
related to the protein’s capacity to associate with a wide
spectrum of phosphotyrosine-containing proteins and
may accordingly allow PLCg1 to interact with an
enlarged repertoire of receptors in various cell types.
Alternatively, the second SH2 domain may function
during activation in a manner not involving receptor
association. However, the exact roles of SH domains of
PLCg1 in the cellular signal transduction pathway have
not been elucidated.

In this report, the role of PLCg1 in signal trans-
duction was investigated by characterizing its interac-
tions with proteins that may represent components of
a novel signaling pathway. To identify the proteins that
interact with SH domains of PLCg1, recombinant
SH223 proteins fused to GST were incubated with rat
brain cytosol and then used as immunogens. One of the
proteins with PLCg1-binding properties identified by
immunoscreening was synapsin IIb. Synapsin (which is
known to exist as five isoforms: Ia, Ib, IIa, IIb and III) is
a synaptic vesicle-associated phosphoprotein implicated
in presynaptic specialization, regulation of neurotrans-
mitter release and synaptic vesicle exocytosis. It is the
main synaptic vesicle protein binding the SH3 domains
of the adapter proteins Grb2 and c-src in vitro
(McPherson et al., 1994; Onofri et al., 2000).

We report here an analysis of the specific interaction
of synapsin IIb with the carboxyl terminal SH2 and SH3
domains of PLCg1 and the specific inhibition of PLCg1
that results.

2. Materials and methods

2.1. Materials

Rat brains were purchased from Pel-Freez Biolog-
icals (Rogers, AR). Mouse antibody against PLCg1 was
generously provided by Dr. Sue Goo Rhee (National
Institutes of Health, USA). Glutathione S-transferase
(GST) was purchased from Pharmacia (Piscataway, NJ)
and all culture media were from Gibco BRL (Gaithers-
burg, MD). Culture supplements for bacterial cells were
purchased from Difco, and nitrocellulose filters from
Schleicher & Schuell (New Hampshire). Alkaline phos-
phatase- and horseradish peroxidase-conjugated anti-
mouse IgG and anti-rabbit IgG were purchased from
Jackson Immuno Research (West Grove, PA.). All other
chemicals used in this study were obtained from Sigma
(St. Louis, MS).
2.2. Preparation of GST fusion proteins containing
PLCg1 SH domains and its binding proteins

Fusion proteins containing various domains of
PLCg1 were constructed and purified as described
previously (Ahn et al., 1998). To isolate the SH223-
binding proteins from rat brain cytosol, rat brain
homogenate prepared as previously described (Han
et al., 2002) was incubated with 1 mg of fusion protein
bound to GST slurry. In vitro pull-down assays using
GST fusion proteins and immunoprecipitation were also
carried out as previously described (Han et al., 2002).

2.3. Preparation of antisera against proteins
associating with the SH223 domain of PLCg1, and
isolation of cDNA clones by immunoscreening with
these purified antisera

To raise antibodies against SH223 domain-binding
proteins, the total SH223-binding protein preparation
(0.2 mg) was injected into two rabbits three times. The
antibodies were precipitated with 33e50% (w/v) ammo-
nium sulfate and purified on a Protein A-Sepharose
column and a GST-SH223 column, used consecutively.
To isolate the genes encoding the SH223 domain-binding
proteins, 106 recombinants from an oligo(dT)-primed
lZAP II mouse brain cDNA expression library (Stra-
tagene, TX) were screened with a pool of the purified
antibodies. Three rounds of immunoscreening with the
purified antibodies sufficed for several immunoreactive
clones to be isolated. Nucleotide sequencing revealed
that two of the 22 positive clones, with insert size 3.7 kb,
were synapsin IIbc DNAs (GenBank� accession
no.096867). Since the isolated synapsin IIb clones con-
tained no complete open reading frame, a mouse brain
cDNA library was re-screened by a semi-nested PCR
method. The library was PCR amplified using a pair of
primers (5#-ATTCTGCCTGTTCCACCTTG-3# for the
first PCR and 5#-GGCAGGTTGGCGATGAAG-3# for
the second) nested in the 5# end of the longest clone, and
one primer in the Bluescript polylinker (BS2). Two of the
five clones sequenced contained the 5# end of the mouse
synapsin IIb cDNA. Mouse and rat synapsin IIb are
95% identical at the nucleotide sequence level; overall,
the predicted amino acid sequences of the mouse and rat
proteins are 99.6% identical (data not shown).

2.4. Preparation of polyclonal antibody against
synapsin IIb

An antiserum against synapsin IIb was generated
by immunizing recombinant His6-synapsin IIb fusion
proteins into a rabbit. The full cDNA fragment
of mouse synapsin IIb was inserted into pRSETB
(Invitrogen, CA) and overexpressed in Escherichia coli
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JM109. A His6-synapsin IIb fusion protein (approxi-
mately 55 kDa) was purified using Ni2C-nitrilotriacetate
(Ni-NTA)-agarose (Qiagen, CA). Rabbits were immu-
nized three times with about 0.5 mg of this fusion
protein. The crude serum was purified through the
ammonium sulfate precipitation (33e50%), protein
A-Sepharose column (Amersham Corp.), and affinity
column. Affinity column was prepared by coupling His6-
synapsin IIb fusion protein to CNBr-activated Sephar-
ose 4B (Pharmacia; Piscataway, NJ) as recommended by
the manufacturer. After the affinity absorption, the
antiserum was eluted, dialyzed against PBS, and then
used for immunoblot analysis.

2.5. Immunoprecipitation and Western analysis

For immunoprecipitation, rat brain extracts were
incubated with the antiserum against synapsin IIb for
2 h at 4 �C, after which 50 ml protein G-plus/protein A-
agarose slurry was added and incubation was continued
for a further 2 h at 4 �C. The mixture was centrifuged
for 5 s and the agarose beads were washed with 20 mM
TriseHCl, pH 7.4, 150 mM NaCl, 1.0% Triton X-100,
1 mM EGTA, 1 mM EDTA, 1 mM PMSF (phenylme-
thylsulfonyl fluoride), 0.15 units/ml aprotinin, 10 mg/ml
leupeptin, 10 mg/ml pepstatin A, and 1 mM sodium
orthovanadate. Immunoprecipitated proteins were frac-
tionated on 8.0% sodium dodecyl sulfate-polyacryl-
amide gel electrophoresis (SDS-PAGE) and blotted on
to Immobilon-P membrane (Millipore, MA) using
overnight transfer. The immunoblots were blocked by
incubation for 1 h in TBST (20 mM TriseHCl, pH 7.5,
150 mM NaCl, 0.1% Tween 20) containing 1% bovine
serum albumin, then incubated with TBST containing
5% bovine serum albumin and the primary antibody for
2 h at room temperature with continuous shaking. They
were then washed three times with TBST and incubated
for 2 h with anti-mouse or anti-rabbit secondary anti-
bodies conjugated to alkaline phosphatase (Sigma). The
membrane was washed carefully and the color reaction
was developed in 100 mM sodium carbonate pH 9.8,
1 mM MgCl2, 0.02% sodium azide, containing 0.34%
NBT ( p-nitroblue tetrazolium chloride) and 0.17%
BCIP (5-bromo-4-chloro-3-indolyl phosphate; dissolved
in 70% and 100% dimethylformamide, respectively).

2.6. PLC reconstitution assay

The effect of synapsin IIb on the activity of PLC
isozymes was evaluated as described previously (Lee
et al., 1993) using phospholipid vesicles containing
[3H]PIP2 and phosphatidylethanolamine in a 1:10
molar ratio. The amount of enzyme present in the
reconstitution assays was adjusted to give similar PIP2-
hydrolyzing activity (1600e1800 cpm) in the absence of
synapsin IIb. CaCl2 was added to the assay mixture to
a final concentration of 10�6 M, which was calculated as
described (Lee et al., 1993). Incubations were for 10 min
at 30 �C.

3. Results

The roles of SH (Src homology) domains as direct
binding modules for receptor tyrosine kinases, such as
epidermal growth factor and platelet-derived growth
factor receptor, are well established. However, their
significance in determining the interactions of PLCg1
with other proteins is still uncertain. To investigate their
roles in intracellular signal transduction pathways other
than conventional phospholipase activity, SH domain-
binding proteins fused to GST were isolated from rat
brain cytosol. An affinity matrix was prepared by
immobilizing the GST-SH2-SH2 (SH22), GST-SH3
(SH3) and GST-SH2-SH2-SH3 (SH223) domain fusion
proteins on glutathione-Sepharose beads (Fig. 1A, Left),
then the rat brain extracts were applied. After incubation
and extensive washing, the bound proteins were analyzed
by SDS-PAGE (Fig. 1A, Right). These proteins were not
detectable in the absence of proteins (Fig. 1A, lane GST),
and the results indicate that binding was efficiently
mediated by GST-PLCg1-SH fusion proteins.

We identified these binding proteins by immunoscre-
ening, which is more specific than alternative methods.
Antisera were raised by injecting the pooled SH binding
proteins into rabbits. Western blot analysis with the
purified sera showed that the antibodies had broad
specificities against the SH223-binding proteins (data
not shown). Through the three rounds of immunoscre-
ening with the purified antibodies, several immunoreac-
tive clones were isolated. Nucleotide sequencing
revealed that two of the 22 positive clones, with insert
size 3.7 kb, were synapsin IIb cDNAs (GenBank�

accession no. 096867).
The tissue expression pattern of synapsin IIb was

examined by Northern blot analysis. Synapsin IIb
appeared to be encoded by a 2.3 kb transcript (Fig. 1B).
The larger transcript is synapsin IIa, an isoform of
synapsin IIb that has almost the same N-terminal
sequence (Sudhof et al., 1989) but a longer C-terminal
tail by virtue of alternative splicing of the same
transcript. Northern blotting indicated that synapsin II
genes were predominantly expressed in the brain
(Fig. 1B). This pattern is consistent with the fact that
synapsin isoforms are expressed only in cells of neuronal
origin (Goldenring et al., 1986).

To confirm the interaction between synapsin IIb and
the SH domains of PLCg1, rat brain extracts were
incubated with Sepharose 4B-immobilized recombinant
GST-SH fusion proteins and the bound proteins were
analyzed by Western blotting with synapsin IIb anti-
body (Fig. 2A). Synapsin IIb is bound to the GST fusion
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Fig. 1. Proteins from rat brain extracts bound to various SH domains of PLCg1 and expression of synapsin IIb mRNA in mouse tissues. (A) Purified

GST-SH2, GST-SH3, and GST-SH223 fusion proteins expressed in Escherichia coli were bound to glutathione-Sepharose as indicated (Left) and

incubated with Triton X-100 (0.5%) extracts of rat brain (Right). The samples were washed with extraction buffer, separated on a 12% SDS-

polyacrylamide gel, and stained with Coomassie brilliant blue. Arrow indicates synapsin IIb. (B) Total cellular RNA was extracted from

various mouse tissues, electrophoretically separated on agarose gel containing formamide (20 mg/ml), transferred to nitrocellulose, and hybridized

with a 32P-labeled mouse synapsin IIb cDNA probe. B: brain, H: heart, K: kidney, Lu: lung, S: spleen, T: thymus, Ly: lymph node.
proteins containing the SH2 and SH3 domains. The two
SH domains lie between the catalytic X and Y domains
of PLCg1. To determine which domain, NH2-terminal
(N-SH2) or COOH-terminal (C-SH2), is responsible for
synapsin IIb binding, GST fusion proteins containing
only one of these domains were incubated with rat brain
extracts and the binding analyzed by Western blotting.
As shown in Fig. 2B, only the C-SH2 domain bound
synapsin IIb in vitro. To verify that the PLCg1-SH
domains bind to synapsin IIb directly, His6-synapsin IIb
was overexpressed and then used in a direct binding test.
Recombinant GST-SH fusion proteins were immobi-
lized on glutathione-Sepharose and incubated with
purified synapsin IIb. As seen in Fig. 2C, His6-synapsin
IIb fusion proteins were retained by the GST-SH22,
GST-SH3, and GST-SH223 fusion proteins. These
results indicate that associations between synapsin IIb
and the SH2-/SH3-domain of PLCg1 are direct.

The in vivo interaction between synapsin IIb and
PLCg1 was tested by co-immunoprecipitation from
a 1% Triton X-100 lysate of whole rat brain. The tissue
lysates were immunoprecipitated with non-immune
rabbit IgG or anti-PLCg1 antibodies and the resolved
immunoprecipitates were probed with anti-synapsin IIb
antibody. As shown in Fig. 3, synapsin IIb was co-
immunoprecipitated with PLCg1. Finally, to examine
the functional significance of the interactions between
synapsin IIb and PLCg1, the effects of synapsin IIb on
the [3H]PIP2-hydrolyzing activity of the three PLC
isozymes were evaluated (Fig. 4). The activities of
PLCb1 and PLCd1 were not affected, but synapsin IIb
inhibited PLCg1 dose-dependently. This observation
suggests that synapsin IIb binding to the SH domains
might regulate PLCg1 activity, and PLCg1 may be
involved in the regulatory signaling pathway of synaptic
transmission by interacting with synapsin IIb.

4. Discussion

In this study, we investigated the function of PLCg1
by characterizing an important binding partner for its SH
domains. By immunoscreening, the PLCg1-binding
proteins were identified as synapsin IIb and other novel
proteins. Synapsin IIb binds to the C-SH2 and SH3
domains of PLCg1. In general, synapsins are the most
abundant synaptic vesicle-associated proteins and have
a crucial role in the regulation of neurotransmitter release
and synaptogenesis (Sudhof, 1995; Chin et al., 1995; Li
et al., 1995; Rosahl et al., 1995; Ferreira et al., 1994).

It is well established that SH2 domains directly
recognize phosphotyrosine, and Arg 568 and 695 may be
the most critical residues for phosphotyrosine binding
by PLCg1 (Pawson, 1995). Synapsin IIb binds specifi-
cally to the C-SH2 domains of PLCg1, but this
interaction is phosphotyrosine-independent (data not
shown). The SH2 domain of PLCg1 recognizes many
phosphotyrosine-containing polypeptides, as revealed
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by immunoblot analysis with anti-phosphotyrosine
antibody 4G10 (data not shown). The significance of
these observations is that binding of the C-SH2 domain
to synapsin IIb does not interfere with its binding to
phosphotyrosine residues in other signaling molecules.
A sequence within the domain, but outside the
phosphotyrosine binding box, is required for synapsin
IIb association.

In this study, synapsin IIb bound PLCg1 via the
C-SH2 and SH3 domains (Fig. 2). Several bodies of
evidence show that SH3 domains play a critical role in
vesicular trafficking (McPherson, 1999). Thus, it is
interesting that a number of SH3 domain-containing

Fig. 3. Synapsin IIb binds to PLCg1 in vivo. Triton X-100 extract of

rat brain was immunoprecipitated with anti-PLCg1 (PLC) or non-

immune rabbit IgG (Pre), respectively. The immunoprecipitate was

probed with anti-synapsin IIb antibody.

Fig. 2. Binding specificity of synapsin IIb to SH domains of PLCg1.

(A) Bacterially expressed GST fusion proteins, containing SH domains

of PLCg1 as indicated, were immobilized on glutathione-Sepharose,

washed, and incubated with rat brain cytosol. The bead samples were

separated on 10% SDS-PAGE and analyzed by immunoblotting with

synapsin IIb antibody. (B) Binding specificity of synapsin IIb to NH2-

or COOH-terminal SH2 domains of PLCg1. Bacterially expressed

GST fusion proteins containing N-SH2 and C-SH2 domains of PLCg1

were used. (C) Direct interaction between purified synapsin IIb and SH

domains of PLCg1. GST fusion proteins containing SH domains of

PLCg1 were immobilized on glutathione-Sepharose, washed, and

incubated with equal amounts of purified His6-synapsin IIb. The bead

samples were separated on 10% SDS-PAGE and analyzed by

immunoblotting with anti-His6.
proteins also contain SH2 domains. In previous studies,
the lipid modifying enzyme synaptojanin, endocytosis
related enzyme AP180 and transcytotic fusion protein
p115 also bound PLCg1 via the C-SH2 domain (Ahn
et al., 1998; Han et al., 2002; Han et al., 2003; Waters
et al., 1992). The N- and C-SH2 domains of PLCg1 have
different specificities: N-SH2 seems to be involved in the
signal transduction pathway, and C-SH2 and SH3 in
synaptic transmission.

Many studies have demonstrated that the synapsins
are involved in regulating neurotransmitter release,
synaptic plasticity and synaptogenesis (Llinás et al.,
1985; Greengard et al., 1993; Han et al., 1991; Ferreira
et al., 1994; Rosahl et al., 1995). Synapsin I is mainly
associated with regulating neurotransmitter release from
presynaptic terminals (Llinás et al., 1985). Synapsin II is
related not only to neurotransmitter release, but also to
synaptogenesis and synaptic plasticity, which is re-
sponsible for long-term potentiation (Han et al., 1991;
Ferreira et al., 1994; Rosahl et al., 1995). Synapsin I,
synapsin II and I/II double-knock-out mice exhibit
impaired synaptic transmission when stimulated at high
frequency, a decreased density of synaptic vesicles in
the active zone of synaptic terminals, and an increased

Fig. 4. Effect of synapsin IIb on the activities of PLC isozymes. The

generation of water-soluble [3H]IP3 by PLCb1, PLCg1 and PLCd1 was

measured using phospholipid vesicles containing [3H]PIP2

(20,000e30,000 cpm per assay) and PE as described under Section 2.

After incubating the PLC (about 100 ng) and increasing amounts of

AP180 (50 ng and 100 ng) at 4 �C for 30 min, assays were initiated by

adding the mixture containing the phospholipid vesicles. After 10 min

at 30 �C, the reaction was terminated and the amount of [3H]IP3 was

quantified as described (Lee et al., 1993). Values represent the mean

(GS.E.) of three independent experiments.
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incidence of seizures triggered by sensory stimulation
(Li et al., 1995; Rosahl et al., 1995).

The fact that synapsin IIb also binds PLCg1 suggests
that PLCg1 may be involved in regulating synapse
formation and, as a result, in long-term neuronal
signaling. To elucidate the meaning of the interaction
of synapsin IIb with PLCg1, the [3H]PIP2-hydrolyzing
activity of the three PLC isozymes was measured in
vitro. Whereas the activity of PLCb1 and PLCd1 was
not affected, the activity of PLCg1 was inhibited by
synapsin IIb in a dose-dependent manner.

This suggests that synapsin binding with the SH2 and
SH3 domains might regulate the activity of PLCg1, and
thus PLCg1 may be involved in regulating neurotrans-
mitter release, synaptic plasticity and synaptogenesis by
interacting with synapsins.
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