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8-Cl-cAMP (8-chloro-cyclic AMP), which induces differentiation, growth inhibition and apoptosis in various cancer cells, has been
investigated as a putative anti-cancer drug. Although we reported that 8-Cl-cAMP induces growth inhibition via p38 mitogen-activated
protein kinase (MAPK) and a metabolite of 8-Cl-cAMP, 8-Cl-adenosine mediates this process, the action mechanism of 8-Cl-cAMP is still
uncertain. In this study, it was found that 8-Cl-cAMP-induced growth inhibition is mediated by AMP-activated protein kinase (AMPK).
8-Cl-cAMP was shown to activate AMPK, which was also dependent on the metabolic degradation of 8-Cl-cAMP. A potent agonist of
AMPK, 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) could also induce growth inhibition and apoptosis. To further delineate
the role of AMPK in 8-Cl-cAMP-induced growth inhibition and apoptosis, we used two approaches: pharmacological inhibition of the
enzyme with compound C and expression of a dominant negative mutant (a kinase-dead form of AMPKa2, KD-AMPK). AICAR was able to
activate p38 MAPK and pre-treatment with AMPK inhibitor or expression of KD-AMPK blocked this p38 MAPK activation. Cell growth
inhibition was also attenuated. Furthermore, p38 MAPK inhibitor attenuated 8-Cl-cAMP- or AICAR-induced growth inhibition but had no
effect on AMPK activation. These results demonstrate that 8-Cl-cAMP induced growth inhibition through AMPK activation and p38 MAPK
acts downstream of AMPK in this signaling pathway.
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8-Chloro-cyclic AMP (8-Cl-cAMP)1 is known to show potent
growth inhibitory effect as well as reverse-transforming activity
in cancer cells, and accordingly, it is under investigation for the
anti-cancer therapeutic potential (Tortora et al., 1995; McDaid
and Johnston, 1999; Propper et al., 1999). Previously, it was
found that 8-Cl-cAMP could modulate the ratio of regulatory
(R) subunits (type I or II) of cAMP-dependent protein kinase
(PKA) (Cho-Chung et al., 1989). Type I-R subunit that has a
stimulatory effect on the cellular proliferation was observed to
decrease after the incubation with 8-Cl-cAMP, which might
result in the growth inhibition (Beebe et al., 1989; Cho-Chung
et al., 1989). However, another explanation for
8-Cl-cAMP-induced growth inhibition has been presented by
several research groups (Langeveld et al., 1997; Halgren et al.,
1998; Gandhi et al., 2001; Lamb and Steinberg, 2002). They
suggested that it is not 8-Cl-cAMP itself but 8-Cl-adenosine,
one of the metabolites of 8-Cl-cAMP, which actually exerts
growth inhibitory effect (Langeveld et al., 1997; Gandhi et al.,
2001). Chemical inhibitors of adenosine kinase and adenosine
transporter attenuated the 8-Cl-cAMP-induced growth
inhibition, which means that metabolic conversion of
8-Cl-cAMP into 8-Cl-adenosine or further metabolites is
indispensable for the cytotoxic activity of 8-Cl-cAMP (Halgren
et al., 1998; Lamb and Steinberg, 2002). We also reported that
8-Cl-cAMP should be converted to further metabolites for its
growth inhibitory action, and 8-Cl-cAMP and 8-Cl-adenosine
induce growth inhibition through the same mechanisms, that is,
protein kinase C and p38 mitogen-activated protein kinase
(MAPK) activation (Ahn et al., 2004, 2005).

Metabolic conversion of 8-Cl-cAMP might result in the
accumulation of the metabolites such as 8-Cl-AMP and
8-Cl-ATP, which could disturb the intracellular AMP or ATP
pool. In fact, it was shown that the cellular concentration of ATP
decreased and that of 8-Cl-ATP increased following the
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treatment with 8-Cl-cAMP or 8-Cl-adenosine (Gandhi et al.,
2001). ATP depletion means the increase of AMP/ATP ratio
that is the stimulatory signal for AMP-activated protein kinase
(AMPK) (Hardie, 2003; Carling, 2004). In the present study, we
tested if AMPK activation could take part in the signaling
mechanisms of 8-Cl-cAMP-induced growth inhibition.

AMPK is an intracellular sensor of ATP level, more precisely
AMP/ATP ratio, and has a crucial role in maintaining the energy
balance, which is very important for the cell survival (Carling,
2004). It is activated when cellular ATP is depleted, and is
known to turn off the ATP consuming pathways such as fatty
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acid synthesis, lipolysis, and protein synthesis, and turn on the
ATP generating pathways such as glycolysis, fatty acid oxidation,
and glucose uptake (Hardie, 2003; Carling, 2004). AMPK is a
heterotrimeric complex composed of a catalytic (a) and two R
(b and g) subunits. The a subunit possesses Ser/Thr protein
kinase activity that is stimulated after the phosphorylation by
upstream kinases, AMPK kinases (AMPKKs). The b subunit is
known to be a scaffold for the trimeric complex, and the g
subunit is regarded to contain the AMP-binding domains.
AMP-binding to the g subunit induces the enzymatic activity of
the a subunit by means of making it more susceptible to
AMPKK. LKB1 (Woods et al., 2003; Shaw et al., 2004) and
Ca2þ/calmodulin-dependent protein kinase kinase (CaMKK)
(Hurley et al., 2005) have been suggested as putative AMPKKs.
Besides the AMP/ATP ratio, AMPK can also be activated by
osmotic stress (Patel et al., 2001), anti-diabetic drugs (Fryer
et al., 2002), and 5-aminoimidazole-4-carboxamide
ribonucleoside (AICAR) (Corton et al., 1995).

AICAR has been widely used as a potent AMPK activator. It is
converted to ZMP, an analog of AMP, by the action of adenosine
kinase after entering the cells (Corton et al., 1995; Hardie,
2003). When treated to various cells including vascular smooth
muscle cells (Nagata et al., 2004; Igata et al., 2005), adipocytes
(Dagon et al., 2006), pancreatic beta cells (Kefas et al., 2003),
and other cancer cells (Imamura et al., 2001; Xiang et al., 2004;
Rattan et al., 2005), AICAR induced growth inhibition and
apoptosis, which means that AMPK can be the key regulator of
cellular growth. Therefore, we decided to look at the role(s)
of AMPK activation in the signaling mechanisms of
8-Cl-cAMP-induced growth inhibition.

Materials and Methods
Reagents

8-Cl-cAMP, 8-Cl-adenosine, 8-Cl-AMP, 8-Cl-ATP, and
Sp-8-Cl-cAMPS were purchased from Biolog (Bremen, Germany).
AICAR was from Toronto Research Chemicals (Ontario, Canada).
SB203580 was obtained from A.G. Scientific (San Diego, CA).
Compound C was from Calbiochem (San Diego, CA). A134974,
ABT-702, and NBTI were purchased from Sigma–Aldrich (St. Louis,
MO). Propidium iodide (PI) and 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyl tetrazolium bromide (MTT) were also purchased from
Sigma–Aldrich. [g-32P]-ATP (6,000 Ci/mmol) was purchased
from Dupont NEN (Boston, MA). Transfection reagent,
LipofectamineTM 2000 was from Invitrogen (Carlsbad, CA).
Dominant negative expression vector with kinase-dead (KD) form
of AMPKa2 was a kind gift from Dr. Morris J. Birnbaum (Howard
Hughes Medical Institute, University of Pennsylvania Medical
School, Philadelphia, PA) (Mu et al., 2001).

Cell culture

HeLa (cervical carcinoma), MCF7 (breast carcinoma), and
MDA-MB-231 (breast carcinoma) cells were maintained in Eagle’s
minimal essential medium (HyClone, Logan, UT), and K562
(leukemia) and HL60 (acute promyelocytic leukemia) cells were
cultured in RPMI1640 (HyClone). DT (K-ras-transformed
NIH3T3) cells were grown in Dulbecco’s modified Eagle medium
(HyClone). Each culture medium was supplemented with 10% fetal
bovine serum (HyClone), 100 units/ml penicillin G, and 100 mg/ml
streptomycin. Cell number or viability was determined with
CoulterTM counter (Beckman Coulter, Fullerton, CA) or MTT
assay as described before (Ahn et al., 2004). To observe dead cells,
cells were stained with PI (50 mg/ml), and then observed under
Optiphot-2 fluorescence microscope (Nikon, Tokyo, Japan). To
investigate cell morphology, cells were stained with Acridine
orange (10 mg/ml), and the cells were observed as above.
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Construction of stable cell line

1.5� 105 HeLa cells were seeded into 60mm dish in Eagle’s minimal
essential medium without serum and KD-AMPK expression vector
and pcDNA3.0 vector (mock) were transfected into cells after
24 h using LipofectamineTM 2000 according to the manufacturer’s
protocol. It was then selected in the presence of G418 antibiotic
(1 mg/ml) for 3 weeks.

Western blotting

Cells were harvested by centrifugation and washed with PBS. The
cell pellet was suspended in an extraction buffer (25 mM Tris–Cl,
pH 8.0, 0.5 mM EDTA, 0.5 mM EGTA, 0.05% Triton X-100, 10 mM
b-mercaptoethanol, 100mM PMSF, 0.1mM sodium pyrophosphate,
2.5 mM NaF, 1 mg/ml each of Na3VO4, benzoamidin, aprotinin,
antipain, and leupeptin) and incubated on ice for 15 min. After
centrifugation at 14,000g for 15 min at 48C, the supernatant was
taken as cell extract. The extracts were separated on 10% SDS–
PAGE and transferred onto a PVDF membrane. The protein-bound
membrane was incubated with the appropriate antibodies followed
by horse-radish peroxidase-conjugated anti-mouse or rabbit IgG
antibody (Bio-Rad, Hercules, CA). The relevant protein bands
were then visualized using the ECLTM detection kit (Amersham,
Piscataway, NJ). Phospho-AMPKa (Thr172) and total AMPKa
antibodies were from Cell Signaling Technology (Danvers, MA).
Antibody for phospho-p38 MAPK (Thr180/Tyr182) was obtained
from BD Transduction Laboratories (San Diego, CA), and total p38
MAPK antibody was purchased from Santa Cruz Biotechnology
(Santa Cruz, CA). Also, antibodies for c-myc and actin were
purchased from Santa Cruz Biotechnology.

AMPK activity assay

HeLa cell lysate was precipitated with saturated ammonium sulfate
solution. Protein (2 mg) was incubated in a reaction buffer
(40 mmol/L HEPES, pH 7.0; 80 mmol/L NaCl; 5 mmol/L magnesium
acetate; 1 mmol/L DTT; 200 mmol/L AMP and ATP; 2 mCi [g-32P]-
ATP) with 200 mmol/L SAMS peptide (synthesized by Peptron,
Daejeon, Korea) for 10 min at 308C. The reaction mixtures were
then spotted onto P81 phosphocellulose disks (Whatman,
Maidstone, UK), and washed three times with 1% phosphoric acid.
Disks were air-dried, and radioactivity was measured with liquid
scintillation counter (Wallac, Turku, Finland).

DNA fragmentation assay

Harvested cells were suspended in lysis buffer (5 mmol/L Tris–Cl,
pH 7.4; 20 mmol/L EDTA; 0.5% Triton X-100), and incubated on ice
for 30 min. After centrifugation at 14,000g for 30 min at 48C,
fragmented DNA in the supernatant was purified by phenol/
chloroform extraction and precipitated with ethanol. DNA was
then electrophoresed on 2% agarose gel and visualized by staining
with Ethidium bromide.

Flow cytometry

Cells were fixed with ice-cold 70% ethanol for at least 3 h, and then
stained with PI (50 mg/ml) containing RNase A (50 mg/ml) at 378C
for 30 min. DNA content was analyzed by FACS-CaliburTM flow
cytometer (BD Bioscience, San Jose, CA) using CellQuestTM

programs (BD Bioscience).

Results
AMPK activity increased after 8-Cl-cAMP treatment

It was reported that cellular ATP was depleted when
8-Cl-cAMP or 8-Cl-adenosine was treated to multiple myeloma
cells (Gandhi et al., 2001). Decrease of intracellular ATP
concentration can result in the activation of AMPK. To verify
whether 8-Cl-cAMP is able to induce the AMPK activation, we
tried to measure cellular AMPK activity after treating the cells
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with 8-Cl-cAMP. AMPK activation can be assessed by Western
blotting with the antibody against phosphorylated AMPK a
subunit (Thr-172) or by kinase assay using a specific substrate,
SAMS peptide (Witters and Kemp, 1992).

HeLa cells were incubated with 8-Cl-cAMP for 3 days,
and Western blotting was performed to measure the
phosphorylation of AMPK (Fig. 1A). AMPK phosphorylation
started to increase 36–48 h after 8-Cl-cAMP treatment, in a
time-dependent manner. Also, in the kinase assay, increase of
AMPK activity was observed from 2 days after the 8-Cl-cAMP
treatment (Fig. 1B). AICAR, a potent AMPK activator, was used
as a positive control, and after 30 min of incubation, it could
activate the AMPK.

Previously, we reported 8-Cl-cAMP-induced growth
inhibition was dependent on its metabolic conversion (Ahn
et al., 2004). To test if 8-Cl-cAMP-induced AMPK activation
is also dependent on the metabolic degradation, metabolites of
8-Cl-cAMP such as 8-Cl-adenosine (Ado), 8-Cl-AMP (AMP),
and 8-Cl-ATP (ATP) were treated to HeLa cells for 3 days, and
then the level of phospho-AMPK was measured (Fig. 1C).
As expected, all the metabolites could increase AMPK
phosphorylation. However, an unhydrolyzable analogue of
8-Cl-cAMP, Sp-8-Cl-cAMPS (Sp-8Cl; 8-chloroadenosine-30,
50-cyclic monophosphorothioate, Sp-isomer), which is not
influenced by the phosphodiesterase (Yokozaki et al., 1992),
could not activate AMPK. When, HeLa cells were incubated
with 8-Cl-adenosine for 3 days, the phosphorylation of AMPK
started to increase 48 h after the treatment (Fig. 1D).
Fig. 1. AMPK activity increased after 8-Cl-cAMP treatment. A: HeLa cells
phospho- or total AMPK Western blotting was carried out. B: After 8-Cl-cA
was performed using SAMS peptide as substrate. Bars denote AMPK enz
controlgroup(P < 0.01,two-tailedt-test).C:HeLacellsweretreatedwith8-
(AMP, 10 mmol/L), 8-Cl-ATP (ATP, 10 mmol/L), and Sp-8-Cl-cAMPS (Sp-8
blotting was carried out. D: 8-Cl-adenosine (10 mmol/L) and 8-Cl-cAMP (8
phospho- or total AMPK Western blotting was carried out as in C. E: 8-Cl-c
A134974 (an adenosine kinase inhibitor, 10 mmol/L) and NBTI (an adenos
blotting was performed as in C.
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Furthermore, an adenosine kinase inhibitor (A134974) and
an adenosine uptake inhibitor (NBTI; S-(4-nitrobenzyl)-6-
thioinosine) effectively attenuated the AMPK phosphorylation
induced by 8-Cl-cAMP (Fig. 1E). These data clearly demonstrate
that 8-Cl-cAMP must be converted to its metabolites in order
to induce the activation of AMPK.

AICAR induced growth inhibition and apoptosis

Next, we wanted to check whether AMPK activation by
8-Cl-cAMP is related with growth inhibition. We examined
the effect of AICAR, an AMPK activator, on cellular growth.
As reported previously (Imamura et al., 2001; Xiang et al.,
2004; Rattan et al., 2005), AICAR showed growth inhibitory
effect on various cancer cells such as HeLa cells, MCF7 cells,
MDA-MB-231 cells, and K562 cells in a dose-dependent
manner (Fig. 2A). In HeLa cells, cell number decreased below
40% of control following incubation with 200 mmol/L AICAR
for 5 days (Fig. 2B). And this decrease of cell number was
mainly caused by apoptotic cell death, which was assessed by
PI staining for dead cells (Fig. 2C), chromosomal DNA
fragmentation assay (Fig. 2D), and flow Cytometric analysis of
DNA content (Fig. 2E). AICAR must be phosphorylated to
ZMP by adenosine kinases in order to activate AMPK
(Hardie, 2003). Accordingly, when HeLa cells were pre-
incubated with an adenosine kinase inhibitor (A134974),
AICAR could not induce apoptosis (Fig. 2E). Also, when HL60
cells were co-treated with AICAR and ABT-702, another
were treated with 8-Cl-cAMP (10mmol/L) for the indicated times, and
MP (10mmol/L) or AICAR (2mmol/L) treatment, AMPK activity assay
ymatic activity (mean R SD, n U 3). Asterisks mean difference from
Cl-cAMP(8Cl,10mmol/L),8-Cl-adenosine(Ado,10mmol/L),8-Cl-AMP
Cl, 10 mmol/L) for 3 days, and then phospho- or total AMPK Western
Cl, 10 mmol/L) were treated to HeLa cells for the indicated times, and
AMP was treated to HeLa cells for 3 days in the presence or absence of
ine transporter inhibitor, 100 mmol/L). Cells were lysed and Western



Fig. 2. AICAR induced growth inhibition and apoptosis. A: HeLa (cervical carcinoma), MCF7 (breast carcinoma), MDA-MB-231 (breast
carcinoma), and K562 (leukemia) cells were incubated with AICAR (0, 0.2, 0.4, 0.6, 0.8, and 1 mmol/L) for 3 days, and then MTT assay (for HeLa,
MCF7, and MDA-MB-231) or cell counting (for K562) was carried out. Bars denote cell number normalized to control group (mean R SD, n U 4).
Asterisks mean difference from control (P < 0.01, two-tailed t-test). B: HeLa cells were treated with AICAR (200 mmol/L), and then cell
number (mean R SD, n U 3) was counted everyday until Day 5. Asterisks mean difference from control (P < 0.01, two-tailed t-test). C: HeLa cells
were incubated with AICAR (2 mmol/L) for 3 days, and PI staining was performed to visualize the dead cells. Pictures were taken under
400T magnification. D: After incubation with AICAR or 8-Cl-cAMP for 3 days, chromosomal DNA was extracted to check the apoptotic DNA
fragmentation.E:HeLacellsweretreatedwithAICAR(200mmol/L) inthepresenceorabsenceofA134974(10mmol/L) for3days.AfterPIstaining,
flow cytometry was carried out to analyze DNA content. Inserted numbers represent the percentage of apoptotic cell population (less than 2N
DNAcontent).F:HL60cellsweretreatedwithAICAR(200mmol/L) inthepresenceorabsenceofABT-702(ABT,10mmol/L) for3daysandstained
with acridine orange. Pictures were taken under 400T magnification.
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adenosine kinase inhibitor, apoptosis was attenuated as
judged by acridine orange staining (Fig. 2F).

AMPK could activate p38 MAPK during 8-Cl-cAMP or
AICAR-induced growth inhibition

We previously showed that p38 MAPK was activated by
8-Cl-cAMP and it could play a critical role during
8-Cl-cAMP-inducedgrowth inhibition (Ahnet al., 2005). IfAMPK
activation is also important for the action of 8-Cl-cAMP, there
should be significant relationship between AMPK activation and
p38 MAPK activation. In addition to the activation of AMPK,
AICAR could also activate p38 MAPK in a time-dependent
manner in HeLa cells (Fig. 3A). This activation of p38 MAPK was
diminished by the treatment with A134974 and NBTI (Fig. 3B).
8-Cl-cAMP-induced p38 MAPK phosphorylation was also
downregulated by A134974 and NBTI (Fig. 3C). Besides, a
Fig. 3. AMPK could activate p38 MAPK. A: After HeLa cells were treated
measured by Western blotting with phospho-specific antibodies. B: HeLa c
for 1 h prior to AICAR (30 min, 2 mmol/L) treatment, and then Western b
C: HeLa cells were incubated with 8-Cl-cAMP (8Cl, 10 mmol/L) for 3 days w
Western blotting was performed with phospho- and total p38 MAPK antib
inhibitor; 20mmol/L) for 1h prior to AICAR treatment. Cells were lysed and
with 8-Cl-cAMP (8Cl, 10mmol/L) for 3 days with or without compound C (2
F: HeLa cells were pretreated with SB203580 (10 mmol/L) for 1 h prior to
phospho-specific antibodies as in A.
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selectiveAMPK inhibitor, compoundC(McCulloughet al., 2005)
completely abolished not only the activation of AMPK
but also the p38 MAPK phosphorylation (Fig. 3D). 8-Cl-cAMP-
induced AMPKandp38MAPKactivationwas also blockedby the
pre-treatment with compound C (Fig. 3E).

However, even in the presence of a p38 MAPK inhibitor,
SB203580, AICAR could still activate AMPK while it clearly
blocked the p38 MAPK activation (Fig. 3F), suggesting that
AMPK activation occurs upstream of p38 MAPK activation.

p38 MAPK inhibitor, SB203580, blocked AICAR-induced
growth inhibition and apoptosis

Previously, we showed that SB203580 blocked the
8-Cl-cAMP-induced growth inhibition and apoptosis (Ahn et al.,
2005). Accordingly, if p38 MAPK mediates AICAR-induced
growth inhibition and apoptosis, then the inhibitor should
with AICAR (2 mmol/L) for 3 h, AMPK and p38 MAPK activation was
ells were pretreated with A134974 (10mmol/L) or NBTI (100mmol/L)
lotting was performed with phospho- and total p38 MAPK antibodies.
ith or without A134974 (10 mmol/L) or NBTI (100 mmol/L), and then

odies as in B. D: HeLa cells were pretreated with compound C (AMPK
Western blotting was performed as in A.E: HeLa cells were incubated
mmol/L). Cells were lysed and Western blotting was performed as in A.
AICAR treatment, and then cell lysates were immunoblotted with
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also be capable of blocking the effect. As a matter of fact,
AICAR-induced growth inhibition was attenuated by ABT-702,
an adenosine kinase inhibitor and a p38 MAPK inhibitor,
SB203580 was also able to lessen the growth inhibitory effect
of AICAR (Fig. 4A). Furthermore, the inhibitory effect of
SB203580 on AICAR-induced growth inhibition was apparent
in the mouse fibroblast DT cells (Fig. 4B) and apoptosis in HL60
cells was also blocked by pre-treatment with SB203580
(Fig. 4C).

Kinase dead (KD)-AMPK inhibits 8-Cl-cAMP-induced
growth inhibition and p38 MAPK activation

To further ascertain the role of AMPK in growth inhibition and
p38 MAPK activation, we generated HeLa cell line, which
overexpresses KD form of AMPKa2. A rat AMPKa2 cDNA
carrying a myc epitope tag at its 50 end was utilized where the
lysine residue critical for ATP binding and hydrolysis was
changed to arginine, resulting in a KD protein (Mu et al., 2001).
After transfection of this KD-AMPK into HeLa cell, we
established stable cell line expressing KD-AMPK. Sufficient
expression of the c-myc-tagged transgene in KD cell line was
confirmed by Western blotting (Fig. 5A). Next, we examined
the effect of the KD-AMPK on 8-Cl-cAMP-treated cellular
growth. KD-AMPK and mock expressing cell line were treated
with 8-Cl-cAMP for 5 days, and were compared with normal
Fig. 4. p38 MAPK inhibitor blocked AICAR-induced growth inhibition an
3 days in the presence or absence of SB203580 (SB, 10 mmol/L) or ABT-70
viability normalized tocontrolgroup (mean R SD,n U 4).Asterisks meand
cellsweretreatedwithAICAR(200mmol/L) for3days inthepresenceorabs
indicatemeanfromfourindependentexperiments(mean R SD,n U 4).Ast
t-test). C: HL60 cells were treated with AICAR (200 mmol/L) in the presen
acridine orange. Pictures were taken under 400T magnification.
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cell growth as a control without 8-Cl-cAMP. As expected,
KD-AMPK expressing cell line attenuated the effect of
8-Cl-cAMP-induced growth inhibition (Fig. 5B). Also, p38
MAPK activation by AICAR or 8-Cl-cAMP was blocked in
KD-AMPK cell line (Fig. 5C,D). Based on these results, we
suggest that AMPK activation occurs upstream of p38
MAPK activation in the signaling pathway of 8-Cl-cAMP- or
AICAR-induced growth inhibition and apoptosis.

Discussion

8-Cl-cAMP has been studied as a prospective anti-cancer agent
for many years because of its growth inhibitory effect in
numerous cancer cells (Cho-Chung et al., 1989; Tortora et al.,
1995; McDaid and Johnston, 1999; Propper et al., 1999).
Cho-Chung et al. suggested in a series of studies that differential
regulation of PKA isozymes, PKA type I and II, is the major cause
of the 8-Cl-cAMP-induced anti-cancer activity (Cho-Chung
et al., 1989; Tortora et al., 1990; Cho-Chung, 1992). However,
Lamb and Steinberg (2002) reported that 8-Cl-cAMP’s effects
are unrelated to PKA-R subunit expression; instead, metabolic
conversion of 8-Cl-cAMP to 8-Cl-adenosine is indispensable
for its cellular toxicity. 8-Cl-cAMP can be converted to
8-Cl-adenosine by the actions of phosphodiesterases
and nucleotide phosphatases in the active serum, and
8-Cl-adenosine is further metabolized into 8-Cl-AMP or
8-Cl-ATP by adenosine kinases (Gandhi et al., 2001). When
d apoptosis. A: HeLa cells were treated with AICAR (200 mmol/L) for
2 (ABT, 10 mmol/L), and MTT assay was carried out. Bars denote cell

ifference from AICAR-treated group(P < 0.01, two-tailed t-test). B:DT
enceofSB203580(SB,10mmol/L),andMTTassaywascarriedout.Bars
erisksmeandifferencefromAICAR-treatedgroup(P < 0.01,two-tailed
ce or absence of SB203580 (SB, 10mmol/L) for 3 days and stained with



Fig. 5. Kinase-dead (KD) AMPK inhibits 8-Cl-cAMP-induced growth inhibition and p38 MAPK activation. A: HeLa cells (con), pcDNA3.0 (mock)
transfected stable cells (vec), and KD-AMPK transfected stable cells (KD-AMPK) were lysed and sufficient expression of this transgene in KD cell
line was confirmed by Western blotting using c-myc antibody. B: KD-AMPK and pcDNA3.0 (mock) transfected stable cells were treated with
8-Cl-cAMP(10mmol/L), andthenormalcellgrowthwithout8-Cl-cAMPtreatmentwasmeasuredasacontrol.Thecellnumber(mean R SD,n U 6)
was counted everyday until Day 5. Asterisks mean difference from control (P < 0.01, two tailed t-test). C: HeLa cells and KD-AMPK transfected
stable cells were treated with AICAR (2 mmol/L) for indicated times and p38 MAPK activation was measured by Western blotting with
phospho- and total p38 MAPK antibodies. D: HeLa cells and KD-AMPK transfected stable cells were incubated with 8-Cl-cAMP (10 mmol/L) for
3 days and Western blotting was performed as in C.
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serum was heat-inactivated, 8-Cl-cAMP’s growth inhibitory
effect was blocked in DT and HeLa cells, whereas
8-Cl-adenosine-induced growth inhibition was not affected
(data not shown), implying that 8-Cl-cAMP’s conversion
to metabolites is indispensable in this process. Also, it was
reported that 8-Cl-cAMP-induced apoptosis is mediated by p38
MAPK activity, which is also dependent on 8-Cl-cAMP’s
metabolic pathway (Ahn et al., 2005).

In this report, we have demonstrated that AMPK
phosphorylation (Fig. 1A) and enzymatic activity (Fig. 1B) was
induced by 8-Cl-cAMP, which was dependent on the metabolic
conversion of 8-Cl-cAMP. Both an adenosine kinase inhibitor
(A134974) and an adenosine transport inhibitor (NBTI)
blocked AMPK activation (Fig. 1E), and 8-Cl-adenosine could
also activate AMPK (Fig. 1D). These data are the additional
evidences for the previous suggestion that the cellular functions
of 8-Cl-cAMP are mediated by its metabolites (Langeveld et al.,
1997; Gandhi et al., 2001; Ahn et al., 2004).

We also observed that AMPK activation could be the
inhibitory signal for cellular growth. A potent AMPK activator,
AICAR induced growth inhibition and apoptosis (Fig. 2), and it
could activate p38 MAPK (Fig. 3A,B), implying that both
8-Cl-cAMP and AICAR share the same signaling pathway
while exerting their cellular growth inhibitory effects. When
co-treated with an adenosine kinase inhibitor (Figs. 2E,F, 3B,
and 4A), AICAR could not induce AMPK/p38 MAPK activation
and growth inhibition because AICAR should be
phosphorylated to ZMP by adenosine kinases for the
intracellular actions (Corton et al., 1995; Hardie, 2003).

Many investigators have demonstrated that AMPK is
obviously involved in the modulation of cellular growth. It is
suggested that very diverse signaling mechanisms are involved
with growth inhibition and apoptosis induced by AMPK
activation, for example, p53 and p21 up-regulation (Imamura
JOURNAL OF CELLULAR PHYSIOLOGY
et al., 2001; Xiang et al., 2004; Igata et al., 2005; Rattan et al.,
2005), ERK inhibition (Nagata et al., 2004) and JNK activation
(Meisse et al., 2002; Jung et al., 2004), NFkB activation (Jung
et al., 2004), and Akt inhibition (Rattan et al., 2005). We and
Kefas et al. (2003) showed that p38 MAPK is another signaling
mediator, whereas several researchers reported that p38
MAPK had no effect on AICAR-induced growth inhibition
(Meisse et al., 2002; Jung et al., 2004; Nagata et al., 2004). This
discordance may be resulted from cell line specific signaling
pathway of AICAR-induced growth inhibition. Nevertheless, in
many cases, p38 MAPK activation was known to be associated
with the cellular actions of AMPK. In ischemic heart, AMPK can
activate p38 MAPK (Li et al., 2005), and AMPK stimulates VEGF
expression and angiogenesis through p38 MAPK activation in
skeletal muscle (Ouchi et al., 2005). p38 MAPK also participates
in the stimulation of glucose uptake by AMPK (Xi et al., 2001;
Pelletier et al., 2005). Similar to these observations, p38 MAPK
can have a significant role during growth inhibition and
apoptosis caused by AMPK activation.

Compound C, a selective inhibitor of AMPK, completely
blocked AMPK/p38 MAPK activation induced by 8-Cl-cAMP or
AICAR (Fig. 3D,E). But we could not investigate the effect of
Compound C on 8-Cl-cAMP-induced growth inhibition
because compound C itself caused severe cell death when
treated for more than 2 days (data not shown). Therefore, we
used dominant negative mutant with KD form of AMPK to
investigate the effect on 8-Cl-cAMP-induced growth inhibition.
KD-AMPK-overexpressed HeLa cell line recovered from the
8-Cl-cAMP-induced growth inhibition compared to vector
only HeLa cell line (Fig. 5B). Recovery was more apparent
when 8-Cl-cAMP treatment was more than 3 days. Also,
KD-AMPK-overexpressed cell line blocked the p38 MAPK
activation induced by 8-Cl-cAMP or AICAR (Fig. 5C,D), which
is also consistent with the effect of compound C treatment.
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Previously, there was a report showing by HPLC analysis that
ATP concentration decreased after 8-Cl-cAMP treatment
(Gandhi et al., 2001). We also have tested whether intracellular
ATP was depleted after 8-Cl-cAMP treatment, which might be
causative of AMPK activation (data not shown). We used an
ATP assay kit based on luciferase activity that requires ATP for
the optimal activation (Lu et al., 2000). When ATP level was
measured using bioluminescence assay in HeLa cells, cellular
ATP concentration has decreased to 70% of control level 1 day
after treatment with 10 mmol/L 8-Cl-cAMP (data not shown).
Cellular ATP depletion was also blocked by A134974 (data
not shown), implying 8-Cl-cAMP-induced ATP depletion is
dependent upon 8-Cl-cAMP’s metabolic alteration.

Some researchers reported that AICAR could not activate
AMPK in HeLa cells or other LKB1-deficient cells (Shaw et al.,
2004; Hurley et al., 2005). But, we could observe AMPK
activation by AICAR in HeLa cells as well as in MCF7 cells that
are LKB1-positive (data not shown). LKB1, a Ser/Thr kinase
mutated in Peutz-Jeghers syndrome patients (Hemminki et al.,
1998), has been identified as the upstream kinase of AMPK
(Woods et al., 2003; Shaw et al., 2004). However, it is still
controversial whether AICAR-induced AMPK activation is
dependent on LKB1 or not (Shaw et al., 2004; Rattan et al.,
2005). Although HeLa cell line was known to be deficient of
LKB1 expression due to complete methylation at its promoter
region (Tiainen et al., 1999), AICAR still could activate AMPK
in HeLa cells, which suggests that AICAR-induced AMPK
activation is not affected by the absence of LKB1. To confirm
this, we tested AMPK activation in MCF7 cells that express
LKB1 mRNA normally. AICAR and 8-Cl-cAMP could induce
AMPK and p38 MAPK activation in MCF7 cells, just like the
results observed in HeLa cells (data not shown). These data
suggest that 8-Cl-cAMP and AICAR activate AMPK–p38 MAPK
signaling pathway regardless of the presence or absence of
LKB1. It also suggests that other AMPKKs other than LKB1
might be in operation after AICAR or 8-Cl-cAMP stimulation
in HeLa cells. CaMKKs as suggested can be the candidate for
AMPKKs (Hurley et al., 2005) after 8-Cl-cAMP incubation.

In this report, we presented that AMPK and p38 MAPK play
important roles in a signaling cascade of 8-Cl-cAMP-induced cell
growth inhibition and apoptosis. 8-Cl-cAMP activated AMPK
through metabolic conversion and this AMPK activation
resulted in the growth inhibition and/or apoptosis, by acting
upstream of p38 MAPK. Our findings elucidate the cellular
action mechanisms of 8-Cl-cAMP, and contribute to the
experimental basis for the therapeutic application of
8-Cl-cAMP or other cancer drugs.
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