Tandem Mass Spectrometry (MS/MS)

Tandem Mass Spectrometry (MS/MS)

- MS/MS: A method that allows the mass spectrum of preselected \& fragmented ions to be obtained.
\square Precursor ions: A particular ion selected in the first mass analyzer.
- Interaction cell: The precursor ion is decomposed spontaneously or by the interaction with energy sources.
- Products ions: Fragment ions from the precursor ions.

Block diagram of a tandem mass spectrometer.
http://en.wikipedia.org/wiki/Tandem_mass_spectrometry

Ion activation methods

: Dissociative interactions in the interaction cell

Neutral

: Low-energy CID vs. lhigh-energy CID

[^0]
Three commonly used CID regimes

		HCD in QE	CID in LTQ
Figure of merit	"High-energy" CID (fast activation)	"Low-energy" CID (slow activation)	Trapping CID (very slow activation)
Instruments used	Magnetic/electric sectors, TOF/TOF	Tandem quadrupoles, quadrupole hybrids (e.g., QqTOF)	Quadrupole ion traps, FT-ICR traps
Collision energy	$2-10 \mathrm{keV}$	$1-200 \mathrm{eV}$	$1-20 \mathrm{eV}$
Collision number	1-5	10-100	100 s
Activation time scale	1-10 $\mu \mathrm{s}$	$0.5-1 \mathrm{~ms}$	$10-100 \mathrm{~ms}$
Instrument time scale (kinetic window)/minimum observable reaction rate	10-100 $\mu \mathrm{s} / 10^{6}-10^{4} \mathrm{~s}^{-1}$	$0.1-1 \mathrm{~ms} / 10^{4}-10^{3} \mathrm{~s}^{-1}$	$10 \mathrm{~ms}-1 \mathrm{~s} / 10^{2}-1 \mathrm{~s}^{-1}$
Distribution of internal energy	Centered at a few electron volts, highenergy tail to tens of electron volts	Centered at few eV, no high energy tail	Centered at a few electron volts, may be Boltzmann or Boltzmann-like
Variability of internal energy	Relatively invariable, scattering angle provides some energy resolved info.	Readily variable with collision energy to obtain energy resolved info.	Some variability with collision energy and number
Efficiency	<10\%	5-50\%	50-100\%
General results	High-energy channels may be accessed together with lower energy processes, sequential dissociation observed	Lower energy processes only, isomerization of precursor may occur, sequential dissociation observed	Low-energy processes only, extensive isomerization of precursor, very slow processes can be observed, typically little sequential dissociation

Meth. Enzymol. (2005) 402, 148

Charge

: Electron capture dissociation (ECD)

Roman A. Zubarev

Neil L. Kelleher

Fred W. McLafferty

$[\mathrm{M}+3 \mathrm{H}]^{3+}+\mathrm{e}^{-} \rightarrow[\mathrm{C}+2 \mathrm{H}]^{1+}+[\mathrm{Z}+\mathrm{H}]^{1+\cdot}$
 Near Thermal Energy Electron

J. Am. Chem. Soc. (1998) 120, 3265

ECD

: Instrumentation

J. Am. Soc. Mass Spectrom. (2005) 16, 1060

ECD in a RF ion trap.
Anal. Chem. (2004) 76, 4263

Charge

: Electron transfer clissociation (ETD)

Donald F. Hunt

$[\mathrm{M}+3 \mathrm{H}]^{3+}+\mathrm{A}^{-} \rightarrow[\mathrm{M}+3 \mathrm{H}]^{2+\bullet}+\mathrm{A}$

PNAS. (2004) 101, 9528

巨

: Instrumentation in LTQ

www.thermofisher.com

ETD

: Instrumentation iin LTQ

CIDvs. ETD

Anal. Chem. (2009) 81, 3208

Photodissociation

- Compatible with all types of mass analyzers.
- Deposits a well-defined energy into precursor ions.
- Uniform, selective photochemical fragmentation possible.

Chem. Soc. Rev. (2014) 43, 2757

Photodissociation

: Instrumentation

Anal. Chem. (2009) 81, 8809

Chem. Soc. Rev. (2014) 43, 2757

[^0]: http://www.lamondlab.com/MSResource/LCMS/MassSpectrometry/collisionalActivationMethods.php

