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LTQ 3D Traps Increase
*Trapping efficiency ~55-70% | ~5% ~11-14x
-Detection efficiency | ~50-100% | ~50% ~1-2x
*Trapping capacity | ~20,000ions| ~500ions | ~40x
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Characteristics of LIT

A
o Higher trapping efficiency (> 10 X) than 3-D QIT.

o Less perturbed from fringing fields at the inlet of LIT.
o Higher storage capacity (> 30 X) than 3-D QIT.

o Overcome the space-charge effect.

J. Am. Soc. Mass Spectrom. (2002) 13, 659



Time-of-flight (TOF) mass analyzer
. Working principle

O

When formed at the surface of the backing plate, ions are e
accelerated through the entire source-extraction region to the — | D- |
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The extracted ions cross the drift region with velocities (v): E=vs | E=0 J_
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V= 2zeV Linear ToF mass spectrometer
m s: Short source region with a high electric field (E).
From D = vt, the flight times of ions (¢): D: Longer field-free drift region (£ = 0).
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o Thus, the flight times of ions depend on the square root of their mass to Am - IAE

charge ratios.

R.J. Cotter, Time-of-Flight Mass Spectrometry (1997)



Initial kinetic energy & Spatial distributions of ions

0 Mass resolution is reduced by the spread in initial
ion kinetic energy (U,) prior to acceleration.

o How is it improved?
sy High accelerating voltage
) Reflectron
0 Mass resolution is reduced by the spread in initial
positions of the ions in the ion source.

o Space-focus plane (@ 2s): A focal point in the drift region
at which faster ions formed toward the rear of the source
catch up with slower ions formed near the front of the source.

o How is it improved?
sy Dual-stage extraction to move the space-focus plane.
) Reflectron

R.J. Cotter, Time-of-Flight Mass Spectrometry (1997)
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Reflectron (lon mirror)
A

| space-focus plane | I I | I | | |

o Single-stage reflectron: Utilizes only a single SR
retarding/reflecting field.
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o Set the voltage (V;) at the back of the reflectron to some value |} \| frftegion geu-uB
greater than the initial accelerating voltage (V) at the source source ;

backing plate: V. > V.
o Penetration depth (d): The distance at which the ions turn

detector —

around from the entrance of the reflectron. Single-stage ion extraction & single-stage reflectron
. . . | | space-focus plane I | |
o Reflected ions reach a new space-focus plane at the grid in A |r-f~‘ p a
front of the detector. vi v
o Dual-stage reflectron: Two linear retarding voltage | aotedars |-t reon —————=T I
. . v s e¥-Uo .
(constant field) regions, separated by an extra grid. o '.‘fu
— +d
o Provides second-order energy correction. L2 I |d2|_’

R.J. Cotter, Time-of-Flight Mass Spectrometry (1997) Dual-stage ion extraction & dual-stage reflectron



Characteristics of TOF
]

Benefits Limitations

Fastest MS analyze

High ion transmission Fast digitizers used in TOF can have limited dynamic range

Limited precursor-ion s
experiments

Well suited for puls

Applications

Almost all MALDI systems

Very fast GC/MS systems




Fourier Transform (FT) Spectrometers
. lon cyclotron resonance (ICR)




Fourier Transform (FT) Spectrometers
. lon cyclotron resonance (ICR)

]
o Itis a form of ion trap, but one in which “ion v 5 v
cyclotron resonance (ICR)” occurs. 2 2

o When an ion travels through a strong magnetic
field, it starts circulating in a plane
perpendicular to the field with an angular
frequency o.:
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Measurement of the ICR signal

: Image current
]
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Characteristics of FT-ICR
]

Benefits Limitations

Powerful for ion chemistry & MS/MS experiments Strict low-pressure requirements

WWell—suiteé{m}gi;‘pulsed joni ethods Subject to space-charg on-molecule reactions

Non-destructive ion detection High cost for purchase & maintenance

‘\mMmMmMmm@@u»mM‘&WM‘Sn) " . | . L

Applications

Study ion chemistry




Orbitrap mass spectrometer
. Working principle

o The Orbitrap is an ion trap with no RF or
magnet fields

o Moving ions are trapped around an electrode:
Electrostatic attraction is compensated by
centrifugal force arising from the initial
tangential velocity.

o Potential barriers created by end-electrodes
confine the ions axially.

o One can control the frequencies of oscillations
(especially the axial ones) by shaping the
electrodes appropriately. ?"

o This idea results in an invention of the orbitrap, | Sl

which consists of a spindle-shaped central
electrode surrounded by a pair of bell-shaped
outer electrodes.

—————— e ]

www.thermofisher.com

Orbital traps
Kingdon (1923)




Orbitrap
- Inventor & strumentation
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Dr. Alexander Makarov Shape of orbitrap




Orbitrap

- Instrumentation
I
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lon rotation in the Orbitrap

]
o A short ion packet of one m/z enters the field tangentially, off-equator.
o lons are squeezed toward the central electrode by decreasing voltage on the central electrode.
o In the axial direction, ions are forced to move away from the narrow gap toward the wider gap near the equator.
o This initiates axial oscillations. After the voltage decrease stops, ion trajectories become a stable spiral.

(7, 9)

www.thermofisher.com



lon trajectories in the Orbitrap

o There are three characteristic frequencies:

o Frequency of rotation: @,

()

o Frequency of radial oscillation: @,

2
R
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o Frequency of axial osciallation: .

/ k
@, =
m/z

Anal. Chem. (2000) 72, 1156



Detection of ions with image charge (current) in the

Orbitrap
[ ]
o Image charge: An opposite charge induced
by 1ons oscillating between the two halves

of the orbitrap.

_

o An amplifier connected to the two halves of
the split outer electrode measures the image

current.
o The orbitrap contains ions with different e k
m/z values, each creating a component of m/z

current with a different frequency.

o After recording the current for a time (~0.1
to 1.5 s), a computer decomposes the
current into its component frequencies V
through Fourier transform.

www.thermofisher.com



lon mobility spectrometer (IMS)

. Gas-phase electrophoresis
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