Lecture 3

Mass Analyzers

Types of Mass Analyzers

Magnetic Sector

- double focusing sector

Quadrupole

- Single quadrupole mass filter

- Triple quadrupole (QQQ)

Ion trap (IT)

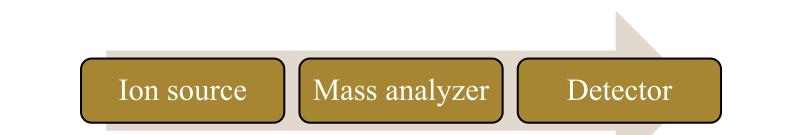
- 3D quadrupole ion trap (QIT)

- 2D linear ion trap (LIT)

Ion cyclotron resonance (ICR)

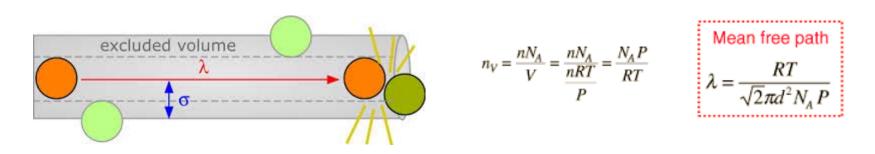
Orbitrap

- LIT OT (LTQ-OT velos, 기초과학공동기기원)
- Q OT (Q-Exactive)
- Q OT LIT (OT Fusion Tribrid)


Time-of-flight (TOF)

- TOF/TOF (MALDI-TOF-TOF-MS, 기초과학공동기기원)
- Q-TOF (Triple TOF, Nicem)

Beam-Type Mass Analyzers (continuous ion flow)


Ion-Trapping Mass Analyzers (pulsed ion flow)

Mass Analyzer & Vacuum

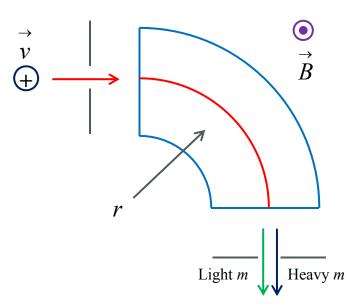
- **Mass analyzer**: An instrument that separates the gas-phase ions according to their *mass-to-charge ratio* (m/z) based on their characteristic behavior in electric and/or magnetic fields.
- **High vacuum** requirement of the mass analyzer: $10^{-4} 10^{-7}$ Pa.
 - Avoid collision with molecules and other neutrals (radicals) or with other ions.
 - **Collision**: Deflect the ion's trajectory, result in collisional activation, or cause charge neutralization.

Mean free path & Vacuum

Vacuum range	Pressure in mbar	Molecules / cm3	Mean free path	
Ambient pressure	1013	$2.7 imes 10^{19}$	68 nm	
Low vacuum	300 – 1	$10^{19} - 10^{16}$	0.1 – <mark>100 μ</mark> m	
Medium vacuum	Medium vacuum $1 - 10^{-3}$		<mark>0.1</mark> − 100 mm	
High vacuum	$10^{-3} - 10^{-7}$	$10^{13} - 10^{9}$	10 cm – 1 km	
Ultra high vacuum	$10^{-7} - 10^{-12}$	$10^9 - 10^4$	1 km – 10 ⁵ km	
Extremely high vacuum	<10 ⁻¹²	<104	$>10^{5}$ km	

Comparison of various types of mass analyzers

Feature	Magnetic	Qaudrupole	LIT	TOF	FT-ICR	Orbitrap
Mass range (Da)	20,000	4,000	4,000	Unlimited	> 10 ⁴	> 10 ⁴
Resolving power	10 ⁵	2,000	10 ³ - 10 ⁴	20,000	> 10 ⁶	5 x 10 ⁵
Mass accuracy (ppm)	< 10	100	50-100	5-50	< 5	< 5
Speed (Hz)	0.1-20	20	20	~30 (>100)	10 ⁻² - 10	15
Dynamic range	10 ⁹	107	10 ⁵	106	10 ⁵	106
Pressure (Torr)	10-6	10 ⁻⁵	10 ⁻³	10-6	10 ⁻¹⁰	10 ⁻¹⁰
Ion sampling	Continuous	Continuous	Pulsed	Pulsed	Pulsed	Pulsed
Cost	\$\$\$\$	\$	\$\$	\$\$-\$\$\$	\$\$\$\$	\$\$\$


Magnetic sector analyzer

- : Momentum analyzer
- Working principle: Ions are accelerated to high velocity through a magnetic field that is *perpendicular* to the direction of ion motion.
- **Ion trajectory**
 - Ion kinetic energy: $KE = zeV = \frac{1}{2}mv^2$

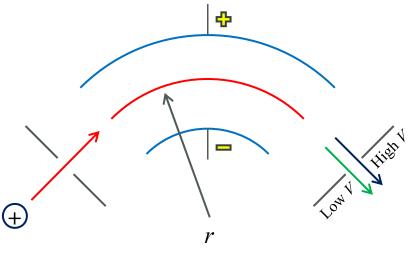
• Forces:
$$F_{\rm M} = Bzev \ \& \ F_c = \frac{mv^2}{r}$$

• Because $F_{\rm M} = F_{\rm c}$: $\frac{m}{z} = \frac{B^2 r^2 e}{2V}$ & $r = \frac{mv}{Bze}$

where *B*: magnetic field (T), *v*: velocity (m/s), *V*: the accelerating voltage

Scan m/z by varying **B** (not V)

Schematic of a magnetic sector analyzer.

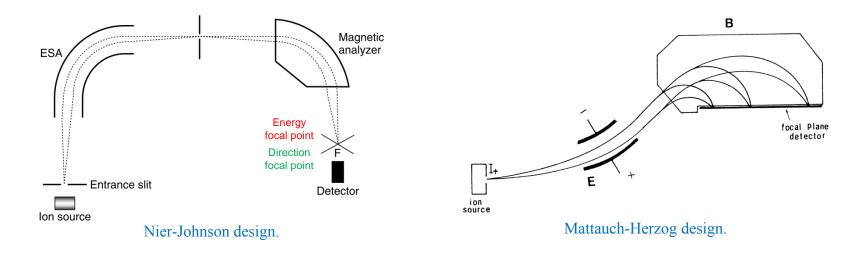

Electrostatic analyzer (ESA) : Kinetic energy filter

- 7
- Instrumentation: Consists of two parallel plates, one of which is held at a positive potential & the other at a negative potential of equal magnitude.
- Working principle: Ions that enter this radial electric field are forced to follow a *circular trajectory* & are dispersed according to their *KE*.

Ion trajectory

• Ion kinetic energy:
$$KE = zeV = \frac{1}{2}mv^2$$

- Forces: $F_{\rm E} = zeE \ \& F_c = \frac{mv^2}{r}$ • Because $F_{\rm E} = F_{\rm c}$: $\frac{m}{z} = \frac{reV}{v^2}$ & $r = \frac{2V}{E}$
- V can be varied to bring ions of different KE.



Schematic of ESA.

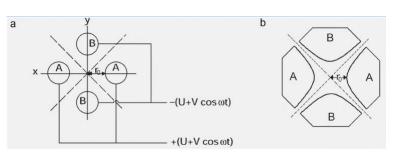
Double-focusing sector analyzer : Achieve high resolution (~10⁵)

□ Ions of equal *m*/*z* but with *different kinetic energies* result in a spread-out beam.

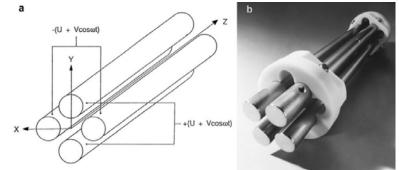
■ Solution: Minimize *energy* & *directional differences* between ions of the same *m/z*.

C. Dass, Fundamentals of Contemporary MS (2007)

Characteristics of sector mass analyzer

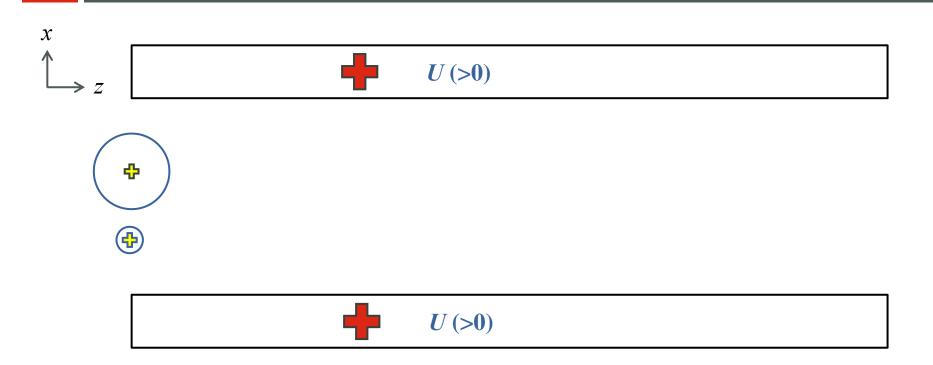

Benefits	Limitations
Very high reproducibility	Not well-suited for pulsed ionization methods
Best quantitative performance of all mass analyzer	Usually larger & higher cost than other mass analyzers
High resolution, high sensitivity, & high dynamic range	
Very reproducible high-energy CID MS/MS	

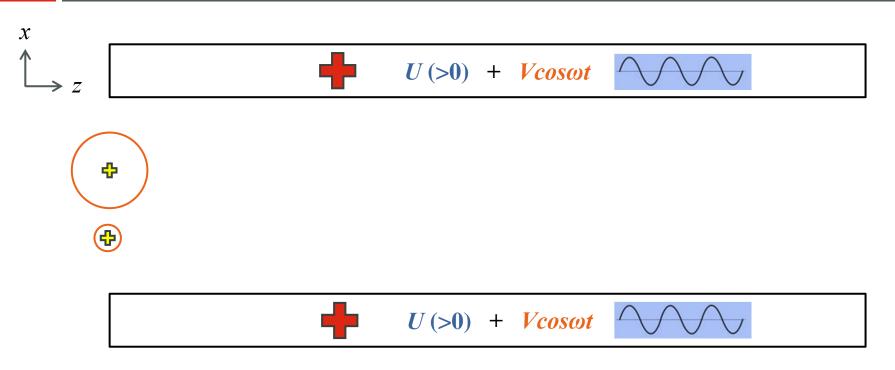
Applications				
All organic MS analysis methods	Quantitation			
Accurate mass measurements	Isotope ratio measurements			


Quadrupole mass filter (QMF) : Compatible for chromatography

Instrumentation

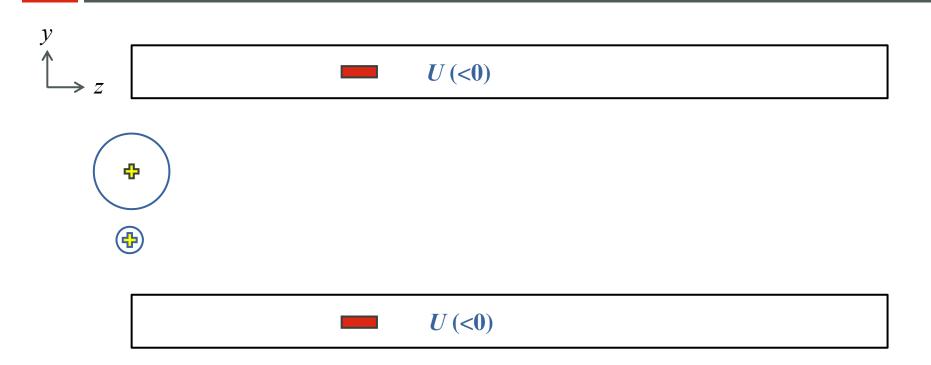
- Four *parallel cylindrical* (originally *hyperbolic*) *metal rods*.
- *Opposite rods* are connected electrically: One pair is attached to the positive side of a variable dc (U) source & the other pair to the negative terminal.
- In addition, variable radio-frequency (RF) ac voltages (*V*), which are 180° out of phase, are applied to each pair of rods.


Cross section of a quadrupole for (a) cylindrical & (b) hyperbolic rods.

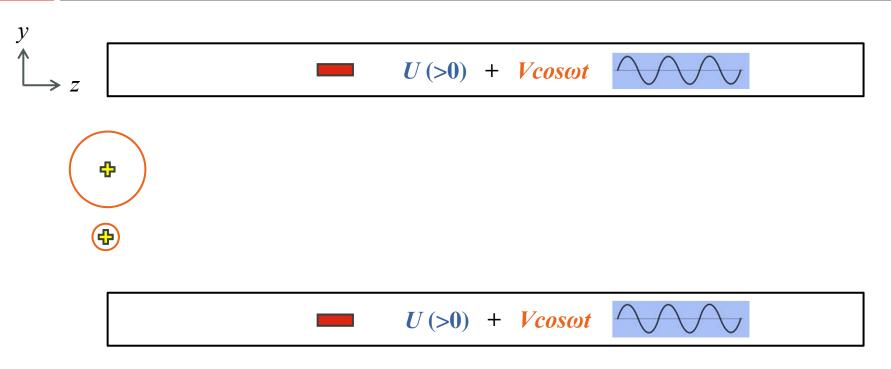

(a) Schematic & (b) photograph of qaudrupole mass analyzer.

J. H. Gross, Mass Spectrometry (2011)

How a QMF work? The pair of rods in the *xz* plane: Only DC

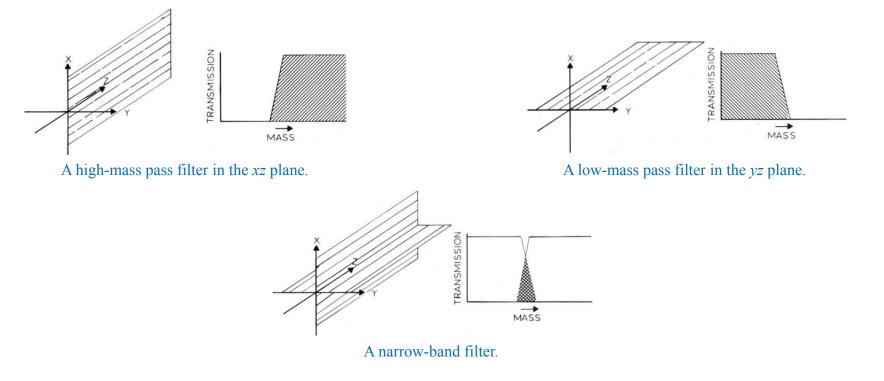


How a QMF work? The pair of rods in the *xz* plane: DC + RF



High-mass pass filter!

How a QMF work? The pair of rods in the *yz* plane: Only DC



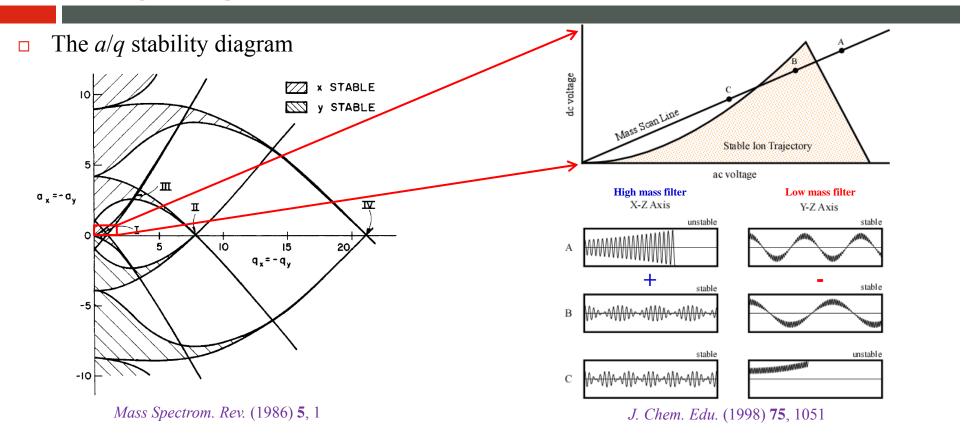
How a QMF work? The pair of rods in the *yz* plane: DC + RF

Low-mass pass filter!

How a QMF work? : A narrow-band filter

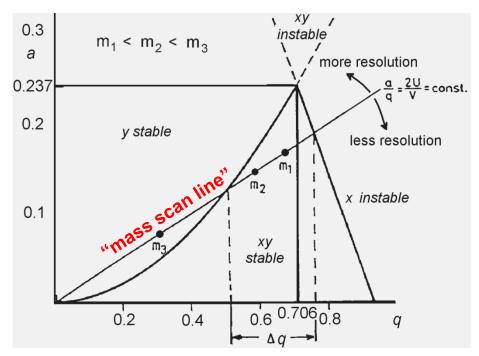
J. Chem. Edu. (1986) 63, 617

Mathieu equation

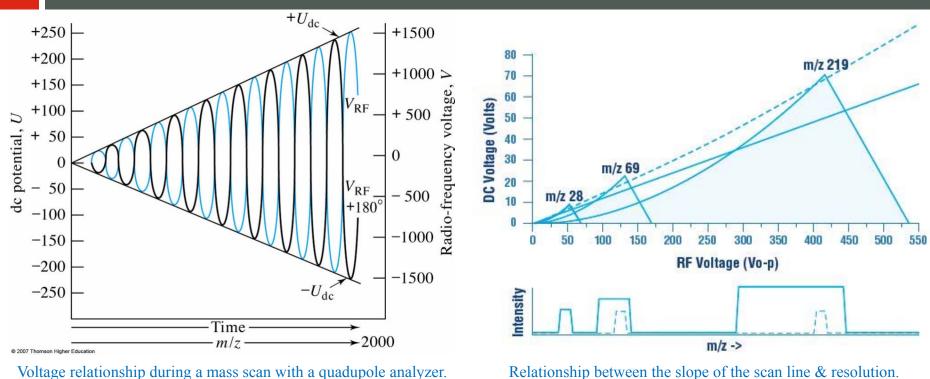

Mathieu equation: A quadratic equation describing the motion of an ion in the x- & y-directions.

$$\frac{d^2u}{d\xi^2} + (a_u - 2q_u\cos 2\xi)u = 0$$

- *u*: The transverse displacement in the x- & y-directions from the center of the field.
- ξ : Equal to $\omega t/2$.
- **Solutions of the Mathieu equation** provides two dimensionless parameters *a* & *q*:

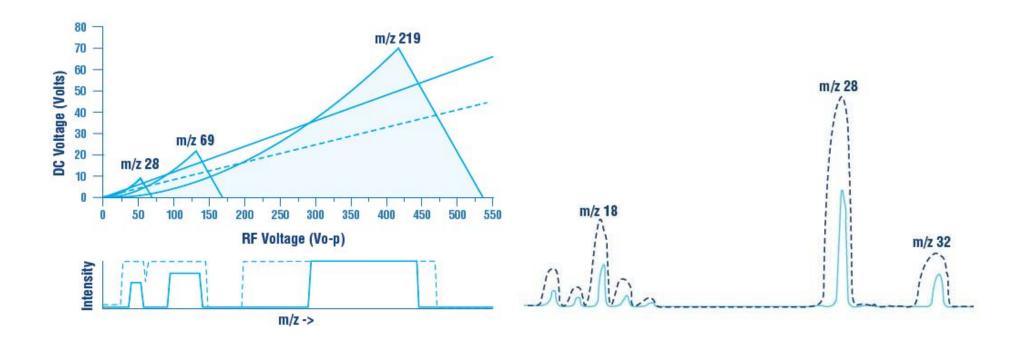

$$a_u = a_x = -a_y = \frac{8zeU}{m\omega^2 r_0^2}$$
$$q_u = q_x = -q_y = \frac{4zeV}{m\omega^2 r_0^2}$$

Stability diagram for a QMF

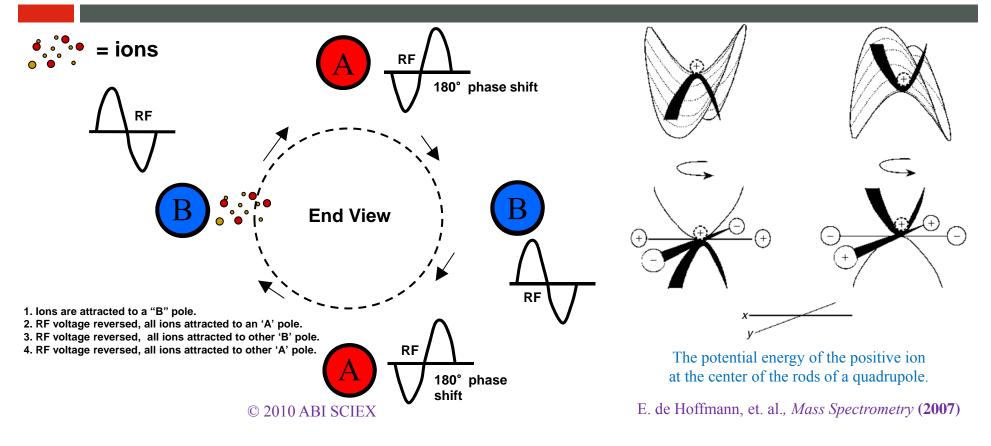

Obtain a mass spectrum with a QMF : Perform a constant *U/V* linked scan

- Mass scan line: A line maintaining the U/V ratio *constant* while raising both U & V simultaneously.
 - A plot of U & V becomes a straight line, starting at the origin & with a slope of U/V.
 - Only ions above the line will pass through the quadrupole.
 - *Resolution* is controlled by the *slope* of the scan line (*i.e.*, U/V).
- **RF-only mode**: If U = 0 (or a = 0), the quadrupole pass all ions above a certain mass → quadrupole ion guide

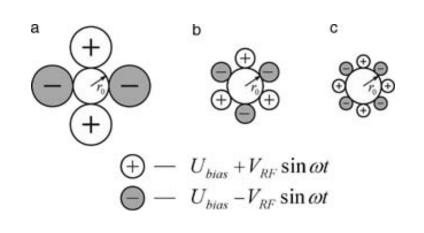
Rev. Mod. Phys. (1990) **62**, 531

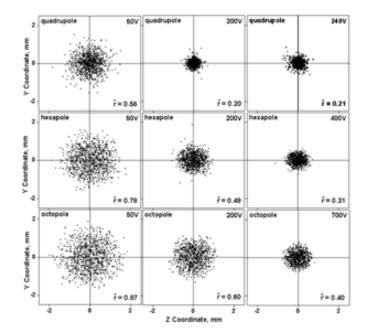

Scanning a QMF : Slope of the mass scan line vs. resolution

D. A. Skoog, et al., Principles of Instrumental Analysis (2007)

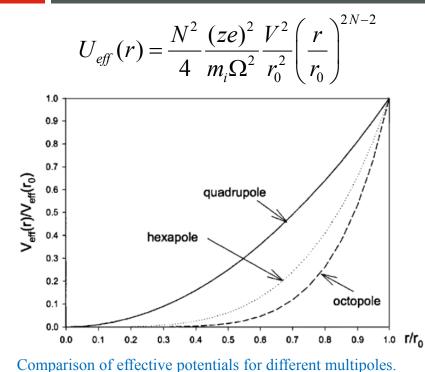

http://www.azom.com/article.aspx?ArticleID=10996

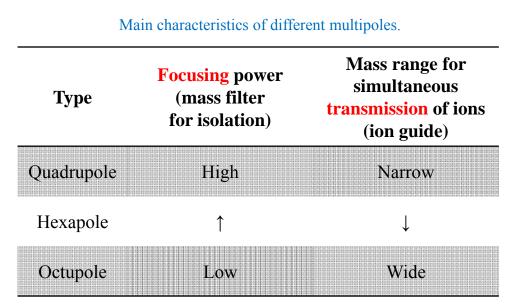
Scanning a QMF : Slope of the mass scan line vs. resolution




http://www.azom.com/article.aspx?ArticleID=10996

RF-only quadupole : How RF focus ions?


RF-only quadrupoles, hexapoles, & octupoles : lon guides & collision cells



Rapid Commun. Mass Spectrom. 2008; 22: 3327-3333

RF-only quadrupoles, hexapoles, & octupoles : lon guides & collision cells

Mass Spectrom. Rev. (2005) 24, 1

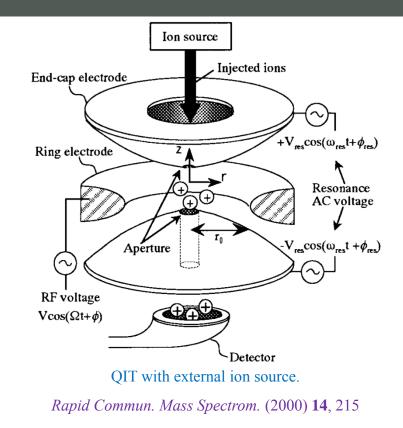
Characteristics of QMF

Benefits	Limitations
Good reproducibility	Limited resolution
Relatively small & low-cost systems	Peak heights are variable as a function of the mass (mass discrimination)
High efficient conversion of precursor to product in low-energy CID MS/MS spectra	Low energy CID MS/MS spectra strongly depends on collision energy, collision gas, pressure, & etc.

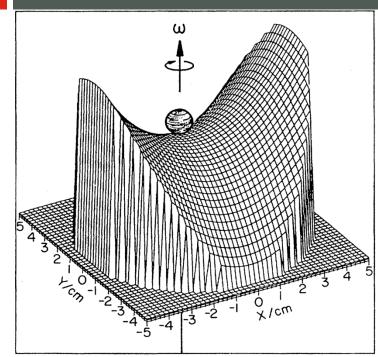
Applications				
Majority of benchtop GC/MS & LC/MS systems	Triple quadrupole MS/MS systems			
Sector/quadrupole hybrid MS/MS systems		nen en de la compañía		

3D-quadrupole Ion trap (QIT)

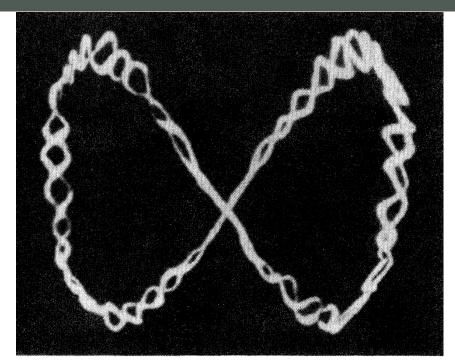
- : Wolfgang Paul & Hans Dehmelt (Nobel Prize in 1989)
- Instrumentation: It consists of two hyperbolic end cap electrodes along with a ring electrode.


Schematic of a QIT.

R. E. March, et. al., Quadrupole ion trap MS (2005)



Working principle of QIT


- □ **Trapped ions**: They can be formed *inside* the QIT or introduced from *outside* the ion trap.
- Ion trapping: A constant frequency RF voltage applied to the central ring electrode causes ions to circulate in stable & 3-dimensional orbits in the cavity.
- Mass-selective ejection: Increasing the amplitude of the RF voltage destabilizes the orbits of ions of one m/z value at a time, sending them flying out of the two end caps.
- □ **Ion detection**: Ions expelled through the lower end cap are detected by the detector.

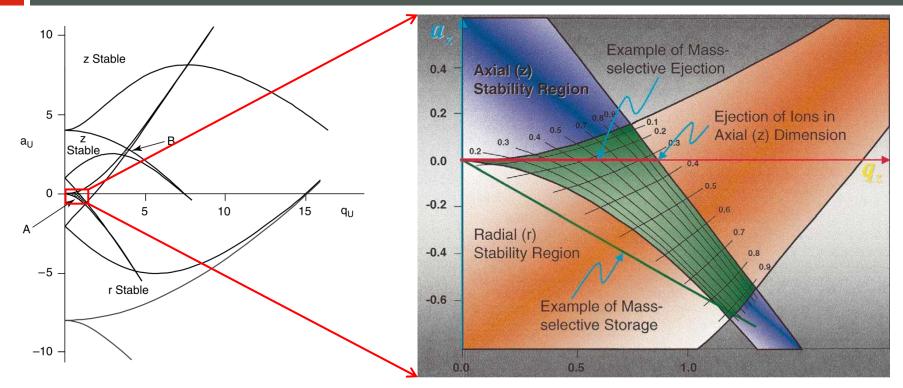
Visualization of ion motion in a QIT

Mechanical analog of a QIT.

Photograph of ion trajectories of charged aluminum particles in a QIT.

Rev. Mod. Phys. (1990) 62, 531

Mathieu equation

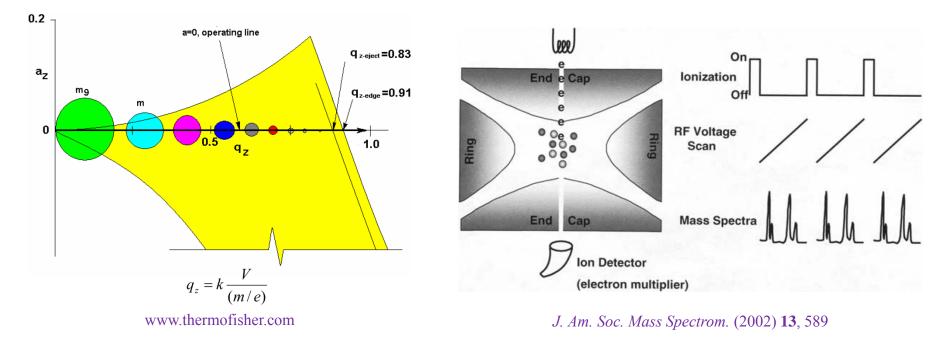

□ With the pair of end caps grounded, the **potential inside the trap** is given as

$$\Phi_0 = U + V \cos \Omega t$$

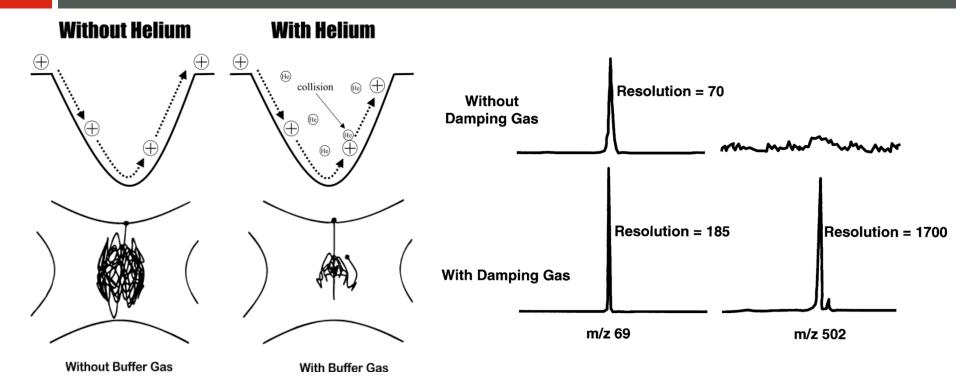
- \Box U: The amplitude of the dc potential applied to the ring electrode.
- \bullet V: The amplitude of the ac potential applied to the ring electrode.
- **D** Ω : Equal to $2\pi f \& f$ is the fundamental RF frequency of the trap ($\approx 1 \text{ MHz}$).
- **Solutions of the Mathieu equation** provides two dimensionless parameters *a* & *q*:

$$a_{z} = -2a_{r} = -\frac{16eU}{m(r_{0}^{2} + 2z_{0}^{2})\Omega^{2}}$$
$$q_{z} = -q_{r} = -\frac{8eV}{m(r_{0}^{2} + 2z_{0}^{2})\Omega^{2}}$$

Stability diagram for QIT



R. E. March, et. al., Quadrupole ion trap MS (2005)


J. Am. Soc. Mass Spectrom. (2002) 13, 589

Mass-selective ejection in QIT

□ With the pair of end caps grounded, an **RF-voltage** (V) scan is applied to the ring electrode: *Consecutive ejection* of ions in the order of their m/z values.

Collision damping : Helium as a **damping gas** in QIT

Int. J. Mass Spectrom. Ion Proc. (1984) 60, 85

Characteristics of QIT

Benefits	Limitations		
High sensitivity	Poor quantitation		
Multi-stage MS (MS ⁿ)	Very poor dynamic range		
Compact size	Subject to space-charge effects & ion-molecule reactions		
	Low mass cutoff in MS/MS spectra (i.e. 1/3 rule)		
	Not easy to understand		

Applications

Benchtop GC/MS, I			
		ound screening	

Study ion chemistry