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Abstract
Aim Ambrosia trifida L. is designated as an invasive
exotic plants in South Korea. Despite its widespread
distribution in South Korea, research on A. trifida is
limited. Organic matter input by A. trifida litter decom-
position is predicted to change the soil environment. In
this study, we investigated the effects of A. trifida litter
decomposition on soil nutrient status.
Methods We used the litterbag method to investigate the
decomposition rate, decay constant (k), carbon/nitrogen
(C/N) ratio, and nutrient dynamics of A. trifida litter
during decomposition.
Results The decay constants (k) of leaf, stem, and root
litter after 11 months of decomposition were 1.93, 1.47,
and 1.28, respectively. After 22 months of decomposi-
tion, the decay constants (k) of leaf, stem, and root litter
were 1.01, 0.99 and 1.84, respectively. After 22 months,
approximately 85% of organic matter, 79% of nitrogen
(N), 98% of phosphorus (P), 96% of potassium (K),
96% of magnesium (Mg), and 69% of calcium (Ca)
were returned to the soil.
Conclusion Our results provide key insights into the
nutrients exchange between A. trifida and soil. Given
the biological characteristics of A. trifida, the input of a
large amount of organic matter to the soil and the
nutrients released through the decomposition of this

organic matter are expected to enhance the growth and
nutrient absorption of A. trifida in invaded areas.

Keywords Invasive alien species . Ambrosia trifida .
Decomposition rate . Mineralization . Nutrient
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Introduction

Invasive plants have become one of the main factors that
threaten the global ecosystem and cause economic prob-
lems (Early et al. 2016; Pimentel et al. 2005; Vitousek
et al. 1997). Several studies have been conducted to
understand the characteristics of invasive plant species
(Balogh et al. 2003; Williams et al. 2018; Williamson
and Fitter 1996) and the factors responsible for their
successful invasion (Cadotte et al. 2009; Dukes and
Mooney 1999) with various possible theories (Davis
et al. 2000; Keane and Crawley 2002; Maron and Vilà
2001; Simberloff and Von Holle 1999; Tilman 1980).
Many studies have reported the impacts of plant inva-
sion on the ecosystem structure (Damasceno et al. 2018;
Gaertner et al. 2014), ecological processes (Davies
2011; Gaertner et al. 2014), species diversity (Davies
2011; Meier and Bowman 2008), and nutrient cycling
(Ehrenfeld 2003; Jo et al. 2017). Plants are considered as
a link between above- and belowground environments
because they uptake nutrients from the soil and return
energy to the soil in the form of litter. Litter is defined as
dead organic matter comprising plant organs such as
leaves, stems, and flowers that have fallen on the ground

Plant Soil
https://doi.org/10.1007/s11104-020-04502-7

Responsible Editor: Alfonso Escudero.

S. Mun : E. J. Lee (*)
School of Biological Sciences, Seoul National University, Seoul,
South Korea
e-mail: ejlee@snu.ac.kr

http://crossmark.crossref.org/dialog/?doi=10.1007/s11104-020-04502-7&domain=pdf


and roots in the ground (Berg 2006). Plant litter exerts
effects both directly and indirectly on the ecosystem
(Facelli 1994; Freschet et al. 2013; Moore et al. 2004;
Olson and Wallander 2002; Xiong and Nilsson 1999).
Litter decomposition affects soil organic matter accu-
mulation and carbon balance in terrestrial ecosystems
(Austin and Ballaré 2010; Zhang et al. 2014).
Decomposed litter constitutes soil organic matter; thus,
adding organic matter into the soil directly influences on
the soil environment (Berg 2000; Cotrufo et al. 2015;
Medina-Villar et al. 2015; Plaster 2013). Soil moisture
level, fertility (Jia et al. 2018; Xiong et al. 2008), and pH
are also influenced by litter input (Xu et al. 2006), and
rapid decomposition of nutrient-rich litter can replenish
soil nutrients (Veen et al. 2019). Also, litter indirectly
modifies the ecosystem by affecting soil organisms and
plant communities (Carson and Peterson 1990). Accu-
mulated litter may disrupt seedling emergence and
growth during the seedling stage (Facelli and Pickett
1991), and soil properties can bemodified by changes in
nutrient dynamics, which are driven by the dominant
plant species (Heneghan et al. 2006). Because plant
characteristics differ, the effects of litter can be either
negative or positive depending on the plant species
(Wardle et al. 2004). Invasive species tend to have more
positive effects on soil than native species. Changes in
soil moisture and increased litter production can en-
hance environmental conditions (Farrer and Goldberg
2009; Wolkovich et al. 2009), and nutrient-rich litter
input can modify soil microbial groups composition
and nutrient cycling, which generates positive feedbacks
that increase plant invasion (Zhang et al. 2019). On the
other hand, Olson and Wallander (2002) reported that
exotic invasive forb litter inhibits the seedling growth of
native species, and Asplund et al. (2018) suggested that
interactions between litter type and habitat type can have
an indirect negative effect on plant growth. Invasive
exotic plant species possess unique traits such as high
litter quality or quantity (Aerts 1997; Chen et al. 2018)
and rapid growth or high biomass (Abul-Fatih et al.
1979b; Smith et al. 2000). Moreover, the litter of inva-
sive plants tends to decompose faster than that of native
species; thus litter decomposition of invasive plant spe-
cies tends to have a greater impact on the physical and
chemical properties of soil by altering the ecological
process (Allison and Vitousek 2004; Hobbie 2015).
Both native and invasive plant species influence the
ecosystem, but invasive plants tend to benefit more from
litter than native species (Dickson et al. 2012).

Ambrosia trifida L., commonly known as giant rag-
weed, originated in North America and was first docu-
mented in South Korea in 1964 (Lee et al. 2010). Am-
brosia trifida L. is a dicotyledonous annual plant species
that grow to more than 4 m in height and inhabits a wide
range of habitats including disturbed ground, riversides,
agricultural land, and abandoned areas. Ambrosia trifida
L. is one of the most problematic weeds in its native area
because of its rapid growth, high biomass, and high seed
mass per plant (Abul-Fatih et al. 1979a; Montagnani
et al. 2017). These ecological traits, especially rapid
growth and high biomass, are advantageous for
A. trifida because these traits enable it to dominate the
invaded areas in a short period by suppressing the
growth of other plant species (Theodore et al. 1994).
Thus, A. trifida invaded areas exhibit low species diver-
sity and poor biomass compared with uninvaded areas
(Barnett and Steckel 2013; Johnson et al. 2007). Since
A. trifida causes many problems, it has been designated
as one of the most harmful invasive alien plant species
in South Korea. Many studies have been conducted on
A. trifida in South Korea. However, most of these stud-
ies focused on the distribution (Choi et al. 2007; Kil
et al. 2004; Kim 2017; Park et al. 2017), the decline in
biodiversity (Kim et al. 2018), and the development of
management practices (Kang et al. 1998; Lee et al.
2010; Lee et al. 2007), but research on the soil environ-
ment after invasion has been limited. Understanding the
post-invasion effects of A. trifida on the soil environ-
ment may be crucial because this information would
help to develop a management strategy and restoration
plan for the invaded areas (D’Antonio and Meyerson
2002).

In the field, litter is decomposed in a mixed form
because a plant community usually comprises various
species. However, in this study, we conducted single-
species litter decomposition because A. trifida generally
forms a simple and dense monoculture in invaded areas.
Since A. trifida is an annual plant species, its litter
(especially leaf litter) disappears within a year. Howev-
er, in the fields, stems of A. trifida remain as standing
litter for a relatively long period of time. Therefore, we
conducted a 2-year experiment to investigate the leaf,
stem, and root litter decomposition and nutrient dynam-
ics of A. trifida. We hypothesized that A. trifida litter has
a significant impact on the soil environment because of
the greater biomass and nutrient input through rapid
decomposition. We also hypothesized that litter decom-
position of A. trifida modifies the habitat to make it
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more suitable for the growth of A.trifida. To test this
hypothesis, we conducted a litterbag experiment from
November 2016 to September 2018. We aimed to better
understand the decay rates and nutrient release patterns
of each organ of A. trifida during decomposition. Our
specific objective was to determine the contribution of
A. trifida litter decomposition to the soil nutrient status
in invaded areas.

Materials and methods

Study area

This study was conducted in the western part of the
Civilian Control Zone (CCZ) in Paju, Gyeonggi-do,
South Korea (Fig. 1). Land use in the CCZ is highly
restricted for security reasons; therefore, only autho-
rized areas could be used for the experiment. Unlike
other parts of the CCZ, western CCZ is close to
Seoul, the capital city of South Korea, and access
to the CCZ in the western part is relatively high.
Additionally, because farmland has been developed
over a wide range, the western part of the CCZ has
more frequent disturbance than other parts (Park and
Nam 2013). The percentage of non-native plants,
including invasive alien plants, is relatively high in
western CCZ, and A. trifida shows widespread dis-
tribution with rapid progression around the
reclaimed area in this region (Kim and Kang 2019;
Lee et al. 2016). This area was selected for the
experimental site because western CCZ contains a
wide range of A. trifida habitats and presents a
relatively low risk of plant removal. The study site
is located in an abandoned area (37°54′ 58.42“N,
126°46’ 32.69”E), near the Imjin River where was
formerly farmland but not currently used. The soil of
the study site was a silt loam with an average soil
pH of 6.47 and soil C/N ratio was 10.9 (2.84% C
and 0.26% N). The Paju meteorological observatory
station is located 4 km distance away from the study
site. Over a period of 10 years (2008–2017), the
mean annual temperature and precipitation at the
meteorological s ta t ion were 11.01 °C and
1295.44 mm, respectively. Over the study period
(2016–2018), the mean annual temperature and pre-
cipitation were 10.6 °C and 978.65 mm, respectively
(Fig. 2).

Litterbag experiment

The litterbag method was used to investigate the decom-
position rate of A. trifida litter and to monitor litter
nutrient dynamics. The litterbag method is one of the
most common methods used to determine the dynamics
of chemical elements and organic compounds during
plant decomposition. Thus, by using this simple meth-
od, important data about the ecosystem process can be
obtained (Berg 2006). After the growing season, senes-
cent aboveground parts ofA. trifidawere harvested from
the vicinity of the study area in October 2016, and
leaves and stems were separated. Roots were excavated
from the soil using a shovel and gently rinsed with tap
water to remove the adhering soil particles. All collected
samples were dried in an oven at 50 °C for 72 h, and a
batch of three samples of each weighted litter type (leaf,
stem, and root) was reserved to analyze initial carbon
and nutrients contents. Litterbags (ca. 20 cm × 25 cm)
were prepared from 1 mm mesh nylon fabric. Approx-
imately 5 g each of leaf, stem, and root litter were
packed separately in litterbags and labeled using a num-
bered aluminum tag with the exact litter weight. Leaf
and stem litterbags (60 each) were tied up by string, and
then anchored on the ground, and sixty root litterbags
were buried in the soil at a depth of 20 cm in November
2016. Leaf, stem, and root litterbags (3 each) were
retrieved after 1 month (December 2016) and then leaf,
stem, and root litterbags (3 each) were retrieved every
2 months interval from February 2017 to September
2018. Debris, mineral soil, and roots that intruded the
litterbags from the outside were removed manually in
the laboratory. Each litterbagwas oven dried at 50 °C for
72 h and then weighted. After weighing, litter samples
were ground using a mixer and preserved in plastic bags
for chemical analysis. The weight of the remaining litter
was expressed as a percentage against the initial dry
weight after a given time, and calculated using the
following equation (Petersen and Cummins 1974)

Weight remaining %ð Þ ¼ Wt

W0
$ 100

where W0 represents the initial dry weight of litter, and Wt repre-
sents the dry weight of litter at time t.
The litter decay constant (k) of each litter type was calculated using

Olson’s formula (Olson 1963)

X t ¼ X −kt
0e

where X0 is the initial dry weight of litter, Xt is the
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remaining dry weight of litter at time t, t is the time
(year), and k is the decay constant.

Chemical analysis

Chemical analysis of retrieved litter was conducted. The
organic C contents of initial and decomposing litter were
analyzed using an Elemental Analyzer (Flash EA 1112,
Thermo Electron Co., USA). Total nitrogen (TN) con-
tent of the litter was analyzed using the Kjeldahl meth-
od, and total phosphorus (TP) content was analyzed

using an inductively coupled plasma atomic emission
spectrometer (ICP-730ES, VARIAN, Australia) after
digestion in a mixture of potassium sulfate, copper
sulfate and sulfuric acid in a block digester. The contents
of potassium (K), magnesium (Mg) and calcium (Ca) in
the litter were analyzed using an ICP atomic emission
spectrometer (ICP-730ES, VARIAN, Australia) after
digestion in a mixture of 60% of nitric acid and 70%
of perchloric acid in a block digester. The percentage of
a nutrients remaining in the decomposing litter after a
certain period of timewas calculated using the following

Fig. 1 Location of the study site in Paju, Gyeonggi-do, South
Korea. Black circle (•) indicates the litterbag experiment site
(37°54′58.42“ N, 126°46’32.69” E) in the Civilian Control Zone

(CCZ). Dotted areas indicate areas invaded by A. trifida. CF, crop
field

Fig. 2 Mean monthly
precipitation and temperature at
the Paju meteorological station
during the study period
(December 2016–September
2018)
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equation (Alhamd et al. 2004):

Remaining %ð Þ ¼ LtCt

L0C0
$ 100

where Lt represents the dry weight of litter at time t, L0
represents the initial dry weight of litter,Ct is the nutrient
concentration in the litter at time t, and C0 represents the
initial nutrient concentration in litter.

Statistical analysis

All statistical analyses were carried out using the R
program (R CoreTeam 2016). The effects of litter type
and seasonal variation on litter remaining weight were
examined with the one-way analysis of variance
(ANOVA), and the statistical significance of differences
between means was determined using a post-hoc Tukey
test at P < 0.05. Differences in the decay constant (k)
were examined using the Kruskal-Wallis test and
Dunn’s test was performed to compare means at
P < 0.05. To determine the effects of litter type on nu-
trient concentration (N, P, K, Mg, and Ca) in the
decomposing litter after a certain period of time, nutrient
concentration data were log-transformed to improve
normality. N concentration was analyzed using the
Welch’s ANOVA followed by Games-Howell post-hoc
test to compare means at P < 0.05. P concentration was
examined using one-way analysis of variance
(ANOVA) followed by a post-hoc Tukey test. K, Mg,
and Ca concentrations were analyzed using the Kruskal-
Wallis test, and the statistical significance of differences
between means was determined using a Dunn’s test at
P < 0.05.

Results

Litter decomposition rate

The decomposition of leaf, stem, and root litter of
A. trifida steadily continued over the study period
(Fig. 3). After the 11 months of decomposition, the
remaining weights of leaf and stem litter were approx-
imately 17.1% and 30.4%, respectively; however, the
remaining weight of root litter was approximately
34.7%. At 22 months, the remaining weights of leaf,
stem, and root litter showed significant differences at
11.0%, 16.5%, and 3.5%, respectively. Leaf litter

decomposed much faster than stem and root litter until
16 months; however, root litter decomposed more rap-
idly than other litter types thereafter. Litter anchored on
the ground, especially leaf litter, decomposed faster than
root litter which buried under the soil until 11 months;
however, after 16 months, the remaining weight of root
litter decreased sharply compared with that of leaf and
stem litter. Seasonal variation in climate had a signifi-
cant effect on litter remaining weight (p < 0.05). The
decay constant (k) of each litter type showed significant
variation (p < 0.05; Table 1). After 11 months, litter
decay rates decreased in the following order: leaf > stem
> root. However, at 22 months, the order of litter decay
rates changed to leaf > root > stem. The decay constants
(k) of leaf and stem litter continued to increase over
time, and reached the highest level at 11 months. After
11 months, whereas the decay constant of root litter
continued to increase, the decay constants (k) of leaf
and stem litter gradually declined.

C/N ratio

The initial organic C contents of leaf, stem, and root
litter of A. trifida were 40.6%, 42.8% and 45.3%, re-
spectively (Fig. 4). The amount of organic C in all litter
types decreased gradually during decomposition. After
22 months, the organic C contents of leaf, stem and root
litter were 30.5%, 38.7% and 28.3%, respectively (Fig.
4). Figure 5 shows seasonal changes in the C/N ratio of
A. trifida litter during decomposition. The initial C/N
ratios of leaf, stem, and root litter were 12.7, 136.3, and

Fig. 3 Remaining weights (%) of decomposing leaf, stem and
root litter of Ambrosia trifida during the experimental period at the
study site. Data represent means ± SD (n = 3)
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452, respectively. The C/N ratio of root litter decreased
rapidly during decomposition; however, that of stem
litter increased sharply to 321 after 1 month and de-
creased thereafter. The C/N ratio was the lowest in leaf
litter and the highest in root litter during decomposition.
After 22 months, C/N ratios of leaf, stem, and root litter
of A. trifida were 12.5, 38.5 and 38.3, respectively.

Changes in nutrients concentration and percentage
of nutrient remaining during litter decomposition

N and P

Figure 6 shows the dynamics of N and P in A. trifida
leaf, stem, and root litter, and the percentages of N and P
remaining during decomposition. The initial concentra-
tions of N in leaf, stem, and root litter were 30.68 mg/g,
6.31 mg/g, and 7.02 mg/g, respectively. The initial N
concentration was significantly higher in the leaf litter
than in stem and root litter (p < 0.01). The N

concentration of decomposing leaf litter decreased to
19.6 mg/g after 1 month and then increased continuous-
ly until 11 months followed by a decline thereafter. The
N concentrations of decomposing stem and root litter
decreased to 3.17 mg/g and 2.14 mg/g, respectively,
after 1 month, and increased gradually thereafter
(Fig. 6a). Percentages of N remaining in decomposing
leaf, stem, and root litter decreased sharply after 1 month
to 59.0%, 48.1%, and 33.8%, respectively, and then
continued to decrease gradually (Fig. 6b). At the end
of the experiment (22 months), percentages of N re-
maining in the leaf, stem, and root litter were 6.3%,
38.3%, and 4.2%, respectively, and percentages of N
remaining in the root and leaf litter were significantly
lower than that remaining in the stem litter (p < 0.01).
The N immobilization period was not detected during
A. trifida litter decomposition (Fig. 6b). The initial P
concentrations of leaf, stem, and root litter were
11.0 mg/g, 3.4 mg/g, and 0.9 mg/g, respectively. The P
concentration of leaf litter decreased rapidly to 2.6 mg/g
after 1 month and then increased to 4.5 mg/g until
7 months. The P concentration of stem litter showed a
declining trend from the beginning of the experiment
until 5 months (1.1 mg/g) and increased slightly there-
after (Fig. 6c). Compared with leaf litter, the P concen-
tration of stem and root litter showed less variability
during decomposition. The P concentration of root litter
showed an increasing trend until 11 months, and de-
creased thereafter. At 22months, the P concentrations of
leaf, stem, and root litter were 1.54mg/g, 1.50mg/g, and
0.82 mg/g, respectively. Similar to N, the P concentra-
tion of leaf litter was also higher than that of stem and
root litter during decomposition (Fig. 6c; p < 0.01). Per-
centage of P remaining in leaf litter decreased rapidly to
22.0% after 1 month, and then decreased gradually until

Table 1 Decay constants (k) of leaf, stem, and root litter after 11
and 22 months of decomposition (Data are means ± SD; n = 3)

Litter type Decay constants (k)

11 months 22 months

Leaf 1.93 ± 0.08 a* 1.01 ± 0.20 a

Stem 1.47 ± 0.82 b 0.99 ± 0.06 b*

Root 1.28 ± 0.70 b 1.84 ± 0.17 a

Different letters within the k column indicate significantly different
means (* p < 0.05, Tukey’s test)

Fig. 4 Changes in organic C (%) of Ambrosia trifida leaf, stem,
and root litter of during the experimental period. Data represent
means ± SD (n = 3)

Fig. 5 Changes in the C/N ratio of decomposing leaf, stem, and
root litter of Ambrosia trifida during the experimental period. Data
represent means ± SD (n = 3)
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22 months (Fig. 6d). The percentage of P remaining in
stem litter showed a similar trend to that remaining in
leaf litter. No P immobilization period was observed
during the decomposition of the leaf and stem litter.
Unlike aboveground litter, the percentage of P remain-
ing in root litter increased to 145.3% after 3 months and
then decreased rapidly. In roots, P was immobilized until
the first 5 months and mineralized thereafter. At the end
of the experiment (22 months), percentages of P remain-
ing in the leaf and root litter was significantly lower than
that remaining in the stem litter (p < 0.05).

K, mg and Ca

Figure 7 shows the dynamics of K, Mg and Ca in
A. trifida leaf, stem, and root litter and the percentage
of each nutrient remaining during decomposition.
The initial concentrations of K in leaf, stem, and root
litter were 64.1 mg/g, 34.6 mg/g, and 3.1 mg/g,
respectively (Fig. 7a). The concentration of K in leaf
and stem litter decreased rapidly during the early
stage of decomposition but showed no fluctuation
after 9 months. By contrast, the concentration of K
in root litter increased to 5.6 mg/g after 5 months and
then declined continuously. By the end of the exper-
iment (22 months), the K concentrations of leaf,
stem, and root litter were 5.0 mg/g, 2.6 mg/g, and
1.5 mg/g, respectively. Overall, the K concentration
of all litter types decreased at the beginning of the
experiment; however, only the declining pattern of
leaf litter was significantly different from that of stem
and root (p = 0.04). The percentages of K remaining
in leaf and stem litter decreased rapidly until 9 months
but showed no variation thereafter (Fig. 7b). K im-
mobilization was not detected in leaf and stem litter
during decomposition. The percentage of K remain-
ing in root litter increased to 153.7% (i.e., immobili-
zation) until 5 months, and then mineralized until the
end of the experimental period. After 22 months, the
percentages of K remaining in leaf, stem, and root
litter were 0.8%, 1.2% and 1.8%, respectively. The
percentage of K remaining in leaf litter was signifi-
cantly different from that of stem and root (p < 0.05).
The initial concentrations of Mg in leaf, stem, and
root litter were 23.3 mg/g, 2.18 mg/g, and 1.0 mg/g,
respectively (Fig. 7c). Initial Mg concentration of
leaf was significantly higher than those of stem and
root litter (p < 0.01). Mg concentration of leaf litter
decreased rapidly to 9.4 mg/g after 1 month and then

gradually until 22 months. Mg concentrations of stem
and root litter did not show large fluctuations during
decomposition. During the decomposition, the Mg
concentration of leaf litter was higher than the stem
and root litters. After 22 months, the Mg concentra-
tions of leaf, stem, and root litter were 5.31 mg/g,
2.1 mg/g, and 5.64 mg/g, respectively. The percent-
ages of Mg remaining in leaf and stem litter de-
creased rapidly to 37.1% and 68.7%, respectively,
after 1 month and then decreased gradually (Fig.
7d). The percentage of Mg remaining in root litter
first decreased to 73.9% after 1 month, increased to
111.3% after 7 months, and then decreased rapidly
until 22 months. During decomposition, Mg was
released continuously from leaf and stem litter; how-
ever, in root litter, Mg was immobilized after
5 months and then released again (Fig. 7d). After
22 months, the percentages of Mg remaining in leaf,
stem, and root litter were 2.5%, 15.9% and 19.2%,
respectively. The percentage of Mg remaining of leaf
litter was significantly lower than that stem and root
litters (p < 0.01). The initial Ca concentration of leaf,
stem, and root litter were 87.7 mg/g, 12.0 mg/g, and
4.7 mg/g, respectively (Fig. 7e). The Ca concentra-
tion of leaf litter was consistently significantly higher
than that of stem and root litter (p < 0.01). In leaf
litter, Ca concentration decreased to 48.2 mg/g after
1 month, and increased gradually to 72.1 mg/g until
9 months, and then decreased thereafter. By contrast,
the Ca concentration of stem and root litter showed
no significant variation during decomposition. After
22 months, the Ca concentration of leaf, stem, and
root litter were 45.3 mg/g, 19.3 mg/g, and 8.6 mg/g,
respectively. The percentage of Ca remaining in leaf
and stem litter decreased rapidly to 2.7% and 16.3%,
respectively, after 1 month (Fig. 7f). The percentage
of Ca remaining in root litter decreased to 69.6%
after 3 months, and increased to 112.6% until
7 months, and then decreased rapidly thereafter. Dur-
ing decomposition, Ca was released continuously
from leaf and stem litter. However, in root litter, Ca
was immobilized at 7 months, and mineralized again
thereafter. After 22 months, the percentages of Ca
remaining in leaf, stem, and root litter were 0.2%,
2.1% and 6.6%, respectively. Both Ca concentration
and percentage of Ca remaining showed significant
differences between aboveground and belowground
litter (p < 0.01).
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Discussion

Decomposition of A. trifida litter

Litter decomposition rates vary among ecosystems, de-
pending on soil biota, substrate quality, macro- and
microclimate, and ecosystem condition (Zhang et al.
2008). In this study, the decomposition rate of leaf litter
was higher than those of stem and root at an early
decomposition stage, whereas root litter was higher at
a later decomposition stage (Fig. 3). The rapid decline in
leaf litter weight observed in this study is consistent with
previous studies (Wang et al. 2014; Xu and Hirata
2005). This might be because the N concentration and
C/N ratio of leaf litter were much higher and lower,
respectively, than those of stem and root litter (Fig. 5).
Lu et al. (2016) also reported that A. trifida leaf litter
decomposed faster than other co-occurring native

species because of its high initial nitrogen concentration.
In this study, we did not analyze the lignin or cellulose
content; however, since the C/N ratio is one of the
predictable factors affecting litter decomposition (Liu
et al. 2018; Taylor et al. 1989), we evaluated the litter
quality based on the initial N content and C/N ratio of
each litter. Litter quality, characterized by nitrogen and
lignin content or C/N ratio, affects the litter decomposi-
tion rate because of its influence on microbial activity
(Aerts 1997; Gulis and Suberkropp 2003; Mfilinge et al.
2002; Twilley et al. 1997). Generally, the initial litter
decomposition rate shows a positive correlation with the
initial litter N content (Coûteaux et al. 1995; Melillo
et al. 1982). Twilley et al. (1997) reported that the
decomposition rate of mangrove leaf litter varies accord-
ing to its N content. Another factor that affects litter
decomposition rate is the physical condition of the litter
(Freschet et al. 2012). Leaf litter is more fragile than

Fig. 6 The dynamics of N and P (a, c) and percentages of remaining N and P (b, d) of decomposing leaf, stem and root litter of Ambrosia
trifida in the study area. Data represent means ± SD (n = 3)
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stem and root litter. Like A. trifida, fast-growing exotic
invasive plant species exhibit thinner leaves and low leaf
construction costs (Baruch and Goldstein 1999; Wright
et al. 2004); thus, leaves tend to decay faster than stems

and roots. In this study, root decomposed more rapidly
than stem litter at the later stage of decomposition (Fig.
3); this may be explained by climatic conditions and
litter location. Climate is a major factor affecting the rate

Fig. 7 The dynamics of K,Mg and Ca (a, c, e) and percentages of remaining K, Mg and Ca (b, d, f) in the decomposing leaf, stem, and root
litter of Ambrosia trifida in the study area. Data represent means ± SD (n = 3)
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of litter decomposition (Aerts 1997; Djukic et al. 2018).
Temperature and moisture conditions affect litter decay
because of their effect onmicrobial activity and leaching
(Bennett et al. 2011; González and Seastedt 2001; Swift
et al. 1979). In the field, stem litter on the soil surface
may be exposed to frequent dry conditions, unlike root
litter buried in the soil (Jiang et al. 2016). Since precip-
itation in spring and winter is decreasing in South Korea
(Jung et al. 2011), there is an increasing risk of drought,
which could inhibit the decomposition of aboveground
litter during the spring at a later decomposition stage. In
our study, stem litter persisted longer than leaf litter.
Also, in the field, some stem litters lasted as a standing
litter where the A. trifida was abundant. The quality of
stem litter and its decomposition were lower than that of
leaf litter, but stem litter remained for a longer time on
the ground. In this condition, stem litter may act as a
barrier, indirectly affecting the A. trifida community
because accumulated litter tends to promote increase in
invasive plant biomass while negatively affecting seed-
ling establishment and species diversity (Mariotte et al.
2017; Xiong and Nilsson 1999). Unlike aboveground
litter (leaf, stem, and reproductive organs), roots usually
remain in the soil. Thus, the decomposition of root could
be affected either directly or indirectly by changes in soil
conditions. Freezing and thawing could also alter the
physical structure of the litter, as these phenomena in-
crease nutrient leaching and microorganism accessibili-
ty, which facilitate litter decomposition at a later stage
(Jiang et al. 2016; Ruhland et al. 2018; Taylor and
Parkinson 1988). Additionally, root litter is more likely
to interact with various soil microorganisms (e.g., bac-
teria and fungi), and soil invertebrates (e.g., millipedes),
which have a positive impact on slowly decomposing
litter (Hättenschwiler and Gasser 2005; Setälä and
Huhta 1990).

Nutrient release during litter decomposition

The growth of terrestrial plants is highly dependent on
litter decomposition rather than on the availability of
mineral-rich soil for nutrient uptake, and organisms in
the soil are ultimately responsible for ensuring the avail-
ability of nutrients for primary biomass production
(Cotrufo et al. 2015; Moore et al. 2004; Wardle et al.
2004). Thus, primary production and decomposition are
interdependent. Annual plants do not accumulate nutri-
ents in plant biomass, but must return nutrients to the
soil in an available form through litter decomposition for

the next generation (Morris et al. 2016). In this study,
although N concentration of each litter type fluctuated
during decomposition, it increased steadily until
11 months (Fig. 6a). The increase in N concentration
during litter decomposition has been reported previous-
ly (Berg and Staaf 1981; Xu et al. 2004), and is usually
caused by the increase in microorganism activity
(Hobbie et al. 2010; Langley and Hungate 2003; Xu
and Hirata 2005). The dynamics of P in decomposing
litter varies greatly among species (Baker et al. 2001;
Enright and Ogden 1987; Gosz et al. 1973). In this
study, P concentration showed a similar pattern to N
(Fig. 6c). An increase in P concentration during litter
decomposition has also been reported previously
(Hobbie and Vitousek 2000; Moro and Domingo
2000). Since K is not a structural element, it tends to
easily leach out from plant litter at the early stages of
decomposition (Swift et al. 1979; Xu et al. 2004). In our
study, K showed the highest mobility among all nutri-
ents, which is consistent with a previous study (Wohler
et al. 1975). Similar to K, Mg is also a non-structural
element and therefore leaches out of litter at an early
stage of decomposition (Osono and Takeda 2004).
Thus, the dynamics of K and Mg showed a similar
trend. Salamanca et al. (1998) reported similar dynamics
of Mg. The increase in Mg concentration could be the
result of nutrient translocation by fungal colonization at
the later stages of decomposition (Bending and Read
1995). Most Ca in decomposing leaf and stem litter was
released after 1 month, and Ca in decomposing root
litter showed immobilization after 7 months (Fig. 7f).
The pattern of Ca release in decomposing leaf and stem
litter in this study was not supported by the previous
studies; however, the pattern of Ca release from root
litter was consistent with previous studies (Dziadowiec
1987), and its release could have been induced by fungal
activity at the later decomposition stage. Overall, the
mobility of nutrients was in the order K >Mg > Ca; the
same order has been reported previously (Aponte et al.
2012; Osono and Takeda 2004; Rutigliano et al. 1998;
Salamanca et al. 1998).

In this study, approximately 86% of organic matter,
79% of N, 98% of P, 96% of K and Mg, and 67% of Ca
were returned to the soil environment after 22 months
through decomposition. During 2017 and 2018, the
average annual productions of A. trifida leaf, stem, and
root litter at the study site were 1.45 kg/m2, 7.43 kg/m2

and 0.86 kg/m2, respectively (Mun and Lee, unpub-
lished data). This amount of biomass was converted to
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plant residues (litter) after the growing season, and
incorporated into the soil through decomposition. In
our study, the remaining weights of leaf, stem, and root
litter after 22 months were 11.0%, 16.5% and 3.5%,
respectively. During the decomposition period of
22 months, 1.29 kg/m2 of leaf litter, 6.21 kg/m2 of stem
litter, and 0.83 kg/m2 of root litter were incorporated
into the soil as organic matter. Therefore, a total of
8.33 kg/m2 litter was returned to the soil as organic
matter after 22 months (Table 2). The total amounts of
N, P, K, Mg, and Ca released from the litter into the soil
through over 22 months were 76.49 g/m2, 40.25 g/m2,
349.02 g/m2, 47.25 g/m2, and 189.55 g/m2, respectively.
Previous studies have reported the relationship between
soil nutrients concentration level and plant invasion
processes (Pyšek et al. 2012; Sardans and Peñuelas
2012; Vilà et al. 2011), and Sardans et al. (2017) re-
vealed that invasive plants were associated with soil
nutrients levels such as N, P, and K availabilities. Soil
properties in A. trifida invaded area were higher than
those in adjacent uninvaded areas (p < 0.05). The soil
organic matter (SOM), NO3

−, total phosphorus (T-P), K,
Mg, and Ca contents ofA. trifida invaded soil were 10.9
± 5.5%, 4.41 ± 1.27 μg/g, 3.2 ± 2.4 mg/g, 9.2 ± 3.3 mg/
g, 9.1 ± 6.4 mg/g, and 67.0 ± 19.3 mg/g; on the other
hand, soil property contents of uninvaded areas were
5.6 ± 1.8%, 3.2 ± 1.2 μg/g, 1.6 ± 0.9 mg/g, 47.7 ±
22.5 mg/g, 4.6 ± 1.7 mg/g, and 7.3 ± 2.5 mg/g for
uninvaded area, respectively (Mun and Lee unpublished
data). Invasive plant species which grow faster than
native species (Ehrenfeld 2003) and produce a large
amount of aboveground biomass generate a large
amount of litter and increase soil nutrient input through
litter decomposition (Jo et al. 2017). Jo et al. (2017)
found that monocultures of invasive plant species in-
crease soil N availability through litter production. Ad-
ditionally, basic cations act as essential resources for
decomposers, as cations can alleviate litter acidity
(Cornelissen and Thompson 1997; Swift et al. 1979).

Moreover, some cations such as Ca2+ provide positive
feedback on soil by changing soil acidity and fertility
(Reich et al. 2005).

Conclusion

We assessed the contribution ofA. trifida litter to the soil
by measuring the decomposition rate. The study shows
that A. trifida can significantly influence on the invaded
soil environment with the fast decomposition and nutri-
ent release. Nutrients release and decomposition of leaf
litter were faster than those of stem litter aboveground.
This shows that A. trifida leaf litter could act to supply
resource to soil environments with high nitrogen content
and low C/N ratio. Rapid nutrient release from
decomposing litter before the active growth period
may have a positive impact on the growth of the next
generation of A. trifida, because its early germination
allows it to utilize nutrient resources earlier than species
that germinate later. Besides, nutrients released from
decomposing litters and incorporated into the soil, could
modify the chemical properties of soil where A. trifida is
invaded. Invasive plants continuously modify environ-
mental conditions, and such changes last for a long time
even after the invasive plants have been removed.
Disturbing the interaction between litter decomposition
and plant growth can be an effective management prac-
tice (Corbin and D’Antonio 2012; Holdredge and
Bertness 2011) because high soil nutrient content pro-
vides positive feedback to invasive plants (Meisner et al.
2012). Thus, knowledge of invasive plant-mediated
changes is important because such changes can influ-
ence on management or restoration success (Hess et al.
2019; Keyport et al. 2019; Pickett et al. 2019). The
results of this study are crucial for understanding the
interactions between litter decomposition and soil nutri-
ent cycling and can provide important information on
invasive plant management. Further studies on the

Table 2 Summary of the amounts of organic matter and nutrients (N, P, K, Mg, and Ca) released into the soil during Ambrosia trifida litter
decomposition after 22 months

Organic matter N P K Mg Ca

Initial amount (g/m2) 9743 97.52 42.35 353.01 50.92 220.69

Remaining % 14.52 21.03 2.11 3.99 3.66 31.14

Released % 85.48 78.97 97.89 96.01 96.34 68.86

Released amount (g/m2) 8328 76.49 40.25 349.02 47.25 189.55
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organic chemical composition of litter types and the
diversity and activities of soil microbes (e.g., bacteria
and fungi) which involved in the decomposition process
are needed to further understand the decomposition of
A. trifida.
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