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The potential habitats of two submerged macrophytes,
Myriophyllum spicatum and Hydrilla verticillata in the river
ecosystems, South Korea
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Abstract – We examined the environmental factors that characterize the habitats of two submerged
macrophytes, Myriophyllum spicatum and Hydrilla verticillata, in South Korea using generalized additive
models (GAMs). We performed a vegetation survey and measured water depth and water velocity fromMay
to September, 2014–2015. Averaged water quality data from the Ministry of Environment’s national water
quality measurement network from January 2012 to October 2015 were used for modeling. Potential
habitats of M. spicatum were linked with chlorophyll a, nitrate nitrogen, suspended solids, water
temperature, water depth, and water velocity (deviance explained = 28.7%, accuracy = 74%). In the case of
H. verticillata, electrical conductivity and suspended solids were key habitat factors (deviance
explained = 23.4%, accuracy = 75%). Model results were highly consistent with observations and field
data. Model performances were evaluated by the accuracy rate, the area under the receiver operating
characteristic curve, the kappa value, and field verification, and were in generally good agreement. Few
studies have evaluated the developed models using the independent field data. By understanding the
environmental factors that characterize the habitats for submerged macrophytes, our results contribute to the
development of conservation and management strategies for river ecosystems.
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Résumé – Les habitats potentiels de deux macrophytes submergés, Myriophyllum spicatum et
Hydrilla verticillata dans les écosystèmes fluviaux, Corée du Sud. Nous avons examiné les facteurs
environnementaux qui caractérisent les habitats de deux macrophytes submergés,Myriophyllum spicatum et
Hydrilla verticillata, en Corée du Sud à l’aide de modèles additifs généralisés (GAMs). Nous avons effectué
un relevé de la végétation et mesuré la profondeur et la vitesse de l’eau de mai à septembre 2014-2015. Les
données moyennes sur la qualité de l’eau provenant du réseau national de mesure de la qualité de l’eau du
ministère de l’Environnement pour la période de janvier 2012 à octobre 2015 ont été utilisées pour la
modélisation. Les habitats potentiels deM. spicatum étaient liés à la chlorophylle a, au nitrate, aux solides en
suspension, à la température de l’eau, à la profondeur et à la vitesse de l’eau (variance expliquée = 28,7 %,
précision = 74 %). Dans le cas de H. verticillata, la conductivité électrique et les solides en suspension
étaient des facteurs clés de l’habitat (variance expliquée = 23,4 %, précision = 75 %). Les résultats des
modèles étaient très cohérents avec les observations et les données de terrain. Les performances du modèle
ont été évaluées par le taux de précision, la surface sous la courbe caractéristique de fonctionnement du
récepteur, la valeur kappa et la vérification sur le terrain, et elles ont été généralement bien concordantes. Peu
d’études ont évalué des modèles élaborés à l’aide des données indépendantes sur le terrain. En comprenant
les facteurs environnementaux qui caractérisent les habitats des macrophytes submergées, nos résultats
contribuent à l’élaboration de stratégies de conservation et de gestion des écosystèmes fluviaux.

Mots-clés : myriophylle eurasienne / Hydrilla / qualité de l’eau / convenance de l’habitat / modèle additif généralisé
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1 Introduction

Submerged macrophytes play an important role as a
producer in food webs, shelter and forage for other organisms,
and as a water quality indicator (Nieder et al., 2004). In
addition, submerged macrophytes produce oxygen in stagnant
regions and prolong the hydrologic retention time for the
removal of particulate nutrients (Nepf et al., 2007). Despite the
importance of submerged macrophytes, the formation of dense
monotypic stands has adverse effects on the diversity and
richness of invertebrates and fish (Buchan and Padilla, 2000).
Dense beds of submerged macrophytes can produce organic
materials from actively growing or senescing macrophytes and
cause eutrophication of the water column (Chambers et al.,
1999). Moreover, their proliferation can impede water flow,
clog inlets of reservoirs, and interfere with recreational
activities (Kenneth, 1996).

The spatial distribution of organisms is related to species
dispersal and survival at a regional scale. In addition, abiotic
conditions (environmental constraints) and biotic interactions
(e.g., competition and herbivory) influence species distribu-
tions at a local scale (Austin, 2002; Bučas et al., 2013;
Chappuis et al., 2014). The occurrence and abundance of
submerged macrophytes are influenced by chemical and
physical factors, such as water quality, light availability
(Dennison et al., 1993), water transparency, water depth
(Canfield et al., 1985), channel slope, channel dimensions
(O’Hare et al., 2011), and hydrological regime (Franklin et al.,
2008). Understanding how diverse environmental factors
affect the habitats of submerged macrophytes is important for
flow control, sediment transport (Järvelä, 2005), and assess-
ments of the ecological condition of rivers (Clayton and
Edwards, 2006).

A variety of statistical approaches such as generalized
linear models and generalized additive models (GAMs) are
important tools for predicting the likely occurrence or
distribution of a species (Pearce and Ferrier, 2000; Austin,
2002). In particular, GAMs are used extensively in habitat
suitability modeling and identification of the optimal
environmental conditions for a given species; data are fitted
using a semi-parametric model to predict non-linear responses
to the exploratory variables (Elith et al., 2006; Drexler and
Ainsworth, 2013; Li and Wang, 2013). GAMs not only have a
strong statistical foundation, but can be used to realistically
model ecological relationships (Yee and Mitchell, 1991;
Sanchez et al., 2008). When the relationship between a species
distribution and environmental variables is complex, GAMs
are practical and perform as well or better than other types of
predictive models (Drexler and Ainsworth, 2013; Li and
Wang, 2013). GAMs have been used to examine potential
seagrass habitats (Lathrop et al., 2001; Downie et al., 2013),
fish production and distributions (Borchers et al., 1997;
Buisson and Blanc, 2008; Murase et al., 2009; Solanki et al.,
2016), and terrestrial plant distributions (Yee and Mitchell,
1991; Austin and Meyers, 1996; Thuiller et al., 2005), but few
studies have used GAMs to examine submerged macrophytes
in river ecosystems.

Recently, river ecosystems in South Korea have experi-
enced channel dredging, channelization, and dam construction
for flood control during rainfall periods and to secure water
resources during drought periods (Woo, 2010). In particular,

the “Four Major Rivers Project” (2009–2012) involved the
construction of 16 weirs and three dams in the Han, Geum,
Nakdong, and Yeongsan Rivers (Lah et al., 2015). This
national project aimed to secure water resources, reduce
flooding, improve water quality, and create multipurpose
public spaces for local residents (Jun and Kim, 2011). Despite
substantial controversy surrounding the effectiveness of this
project (Normile, 2010), it drastically changed the natural
riverine habitats and enabled the artificial manipulation of the
water level and the regulation of water flow (Lee et al., 2014).
The modified slow velocity in regulated streams may increase
the abundance of macrophytes (Bunn and Arthington, 2002)
and devastate habitats for organisms adapted to the natural
discharge regime (Dynesius and Nilsson, 1994).

Alterations to hydrological regimes affect the structure
and function of aquatic ecosystems, resulting in changes in
the spatial distributions of submerged macrophytes (Tian
et al., 2015). Submerged macrophytes in the river ecosystems
of South Korea were found to change from slow flowing
streams to large rivers after weir construction. Myriophyllum
spicatum L. (Eurasian watermilfoil) and Hydrilla verticillata
(L. f.) Royle (Hydrilla) are native species in South Korea;
however, they are fast growing and the most abundant
macrophytes in Korean rivers. They are invasive species and
strong competitors in Europe, the United States, and South
America owing to their rapid and dense growth (Van et al.,
1999; Gassmann et al., 2006; Beck et al., 2008). These two
species are cosmopolitan angiosperms with extensive
worldwide ranges (Zhou et al., 2016) and overrun various
habitats, from lentic to lotic systems, and in turn affect flow
velocity and nutrient cycling in the water column (Sousa,
2011).

Accordingly, it is necessary to understand the current
distributions as well as predict suitable habitats of submerged
macrophytes with high invasive potentials for river manage-
ment and conservation planning. Few studies have predicted
the distributions of submerged macrophytes in the rivers using
GAMs (Ahmadi-Nedushan et al., 2006; Camporeale and
Ridolfi, 2006). Moreover, the developed GAMs have rarely
been validated via independent field data (Guisan et al., 2002).
The aims of the study were to examine under what
environmental conditions M. spicatum and H. verticillata
are likely to occur in and to predict and validate their suitable
habitats. Our specific objectives were (1) to characterize the
relationship between environmental variables and the occur-
rence of two submerged macrophytes (M. spicatum and H.
verticillata) using GAMs, (2) to predict the suitable habitats
for these two submerged macrophytes, and (3) to evaluate
GAMs by applying the independent field data.

2 Materials and methods
2.1 Study sites and data collection

The study sites were located in the central and southern
parts of the Korean Peninsula (33°–39°N, 124°–130°E) which
has a temperate climate. The mean annual precipitation is
approximately 1300mm, and the mean annual temperature is
10–14 °C (Korea Meteorological Aministration, http://www.
kma.go.kr/weather/climate/average_normal.jsp). Two-thirds
of the annual precipitation occurs in the summer
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(June–August). The winter season (December–February)
tends to be dry and cold, reflecting a typical continental
weather pattern (Shin and Chung, 2011).

Surveyed streams and rivers converge into fivemajor rivers:
Han River, Geum River, Nakdong River, Yeongsan River, and
SeomjinRiver (Fig. 1). For the vegetation survey, 197 sites in the
rivers and tributaries were randomly selected, including 71 sites
in the Han River, 43 sites in the Geum River, 46 sites in the
NakdongRiver, 27 sites in theYeongsanRiver, and10 sites in the
Seomjin River. Sites were assigned to water quality monitoring
towers operated by the Ministry of Environment. The presence
and absence of submerged macrophytes were recorded using a
belt transect (50m! 2m) parallel to the direction of water flow
fromMay toSeptember in 2014–2015 (Dawson et al., 1999;Riis
et al., 2001) and from June to July in 2016 for field verification.
The belt transect was spaced 1m from the edge of the river.
Submergedmacrophytes are rarelyobservedatdepths exceeding
2.5m in rivers and streams (Riis et al., 2001; Angradi et al.,
2013); examinationswere performedbywading or in a boatwith
a rake for confirmation (Park et al., 2013).

Water quality data were acquired from the Ministry of
Environment’s national water quality measurement network
(http://water.nier.go.kr) from January 2012 to October 2015.
Averaged water quality data calculated from monthly measure-
mentswereused formodeling.Wechose14waterenvironmental
variables that had a postulated relationship with the ecological
requirements of submerged macrophytes (Gallego et al., 2015;
Klippel et al., 2016), namely, water temperature, pH,
biochemical oxygen demand (BOD), chemical oxygen demand
(COD), suspended solids, total nitrogen, ammonium nitrogen,
nitrate nitrogen, total phosphorus, total organic carbon, electrical
conductivity, total dissolved nitrogen, total dissolved phospho-
rus, and chlorophylla. In each transect,water depth (meter stick)
and water flow (Flowatch; JDC Electronic SA, Yverdon-les-
Bains,Switzerland)weremeasured three timeswherevegetation
wasmost abundant, and the values were averaged. If submerged
macrophytes were lacking, water depth and water flow were
measured in triplicate at the midpoint of the transect. We
recorded channel structure and confluence points according to in
situ survey and stream order data obtained from the Water

Resources Management Information System (the Ministry of
Land, Infrastructure and Transport, www.wamis.go.kr).

2.2 Model building

All statistical analyses were performed in R (R Develop-
ment Core Team, 2016). Prior to the statistical analysis, all
explanatory variables were log10-transformed to improve
normality (Chappuis et al., 2014). Pearson correlation analyses
were performed to detect high multicollinearity (Zhao et al.,
2014; Wedding and Yoklavich, 2015) and the variables that
have correlation coefficient greater than 0.75 with another
variable were eliminated (Kuhn and Johnson, 2013) (Tab. S1).
Total nitrogen, BOD, COD, ammonium nitrogen, total
phosphorus, total organic carbon, and total dissolved nitrogen
were excluded because they were highly correlated with
suspended solids, nitrate nitrogen, and total dissolved
phosphorus. Multivariate statistical methods, such as principal
component analysis (PCA), have been recommended to
determine the main environmental factors before inclusion
in models (Shmueli, 2010; Zhao et al., 2014). Six significant
elements of water environmental factors determined via PCA
were selected and two elements from in situ measurements
(water depth and water velocity) were added to the GAMs
(Tab. S2). Finally, eight environmental descriptors were
included in GAMs: chlorophyll a, electrical conductivity,
nitrate nitrogen, suspended solids, total dissolved phospho-
rous, water temperature, water depth, and water velocity. All
variables describing the physical and chemical properties of
water included in the GAMs are described in Table 1.

We used GAMs to approximate the probability of taxon
presence with respect to the predictors. A binomial
distribution was specified (presence = 1 and absence = 0)
with a logit link function relating the dependent variables to
the predictors. Such approach allows modeling presence–
absence data at survey sites, thereby enabling the probability
of species occurrence to be predicted from independent data
at unsurveyed sites (Pearce and Ferrier, 2000). The descriptor
variables were modeled as cubic splines, with four degrees of
freedom for smoothing splines (Lehmann, 1998;

Fig. 1. Studied streams in South Korea. The streams were roughly classified into five rivers: Han River, Geum River, Nakdong River, Yeongsan
River, and Seomjin River.
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Wood, 2000), using the “mgcv” library for GAMs (Wood,
2006). The most parsimonious model for each species with the
fewest variables was chosen using a stepwise selection
procedure (Buisson et al., 2008). To determine the best fit
model, Akaike’s information criterion (AIC) was used as a
goodness-of-fit statistic (Zuur and Pierce, 2004; Buisson et al.,
2008;Sanchezetal., 2008).Modelswitha smallerAICwereable
to explain the residual deviance better than those with a larger
AIC. The bestmodel accounted for themost variation in the data
using the fewest predictors (Burnham and Anderson, 1998).

2.3 Validation of the predictive performance of
models

To obtain an unbiased estimation ofmodel performance, it is
best to apply independent data that have not been used formodel
development (Pearce and Ferrier, 2000). However, if indepen-
dent data are not available, a k-fold cross-validationmay be used
to assess model accuracy (Pearce and Ferrier, 2000; Zimmer-
mann et al., 2007). We applied k-fold cross-validation (with
k= 10); the data were randomly split into two datasets: 90%
(k" 1subsamples)wasusedasa trainingdataset tobuildamodel
and the remaining 10% (one subsample) was used as a testing
dataset for validation. This procedure was repeated ten times to
calculate the probabilities of occurrence, which were trans-
formed into binary records (presence/absence) using a threshold
probability (Sing et al., 2005; Ara!ujo and Luoto, 2007). To

generate a confusionmatrix, theYouden indexwas chosen as the
threshold probability, which was the maximum difference
between sensitivity (the probability of correct classification as
positive) and specificity (the probability of correct classification
as negative) (Jiménez-Valverde and Lobo, 2007; Freeman and
Moisen, 2008), using the “SDMTools” library for model
accuracy (VanDerWal et al., 2014). Coordinates of observations
and predictions based on the confusionmatrix were projected to
World Geodetic System 84 (WGS84) using QGIS (QGIS
Development Team, 2016).

Model accuracy was assessed by two measures: Cohen’s
kappa and the area under the receiver operating characteristic
(ROC) curve (AUC) (Zimmermann et al., 2007). Cohen’s
kappa is the most common method for determining the
accuracy of presence–absence predictions based on a selected
threshold probability, regardless of variation in prevalence
(Segurado and Araujo, 2004; Allouche et al., 2006). Landis
and Koch (1977) suggested the following interpretation of
kappa values: excellent agreement, >0.75; good agreement,
0.40–0.75; and poor agreement, <0.40. Another method for
assessing the accuracy of models uses the AUC value as a
threshold-independent criterion (Fielding and Bell, 1997). To
construct ROC curves, all possible thresholds were used to
classify the scores into confusion matrices, and the sensitivity
and specificity were estimated for each matrix (Allouche et al.,
2006). According to Swets (1988), AUC values were
interpreted as follows: excellent, >0.90; good, 0.80–0.90;
fair, 0.70–0.80; poor, 0.60–0.70; fail, 0.50–0.60. Moreover, in

Table 1. Mean, standard error (SE), minimum (Min), and maximum (Max) values for physical and chemical properties of water at 197 sites.
Chlorophyll a, electrical conductivity, total dissolved phosphorus, nitrate nitrogen, and suspended solids are presented as mean values of
monthly estimates from 2012 to 2015, water temperature is presented as the mean fromMay to October, and water depth and velocity data were
obtained at the sampling date.

Variable Unit Mean Median SE Min Max

Chlorophyll a mg/m3 14.0 9.6 0.9 0.9 65.1

Electrical conductivity mS/cm 328 258 19 77 1515
Total dissolved phosphorus mg/L 0.076 0.035 0.009 0.008 1.282
Nitrate nitrogen mg/L 2.2 2.1 0.1 0.5 5.9
Suspended solids mg/L 9.6 8.3 0.5 1.1 35.9
Water temperature °C 23.1 23.5 0.1 17.7 26.0
Water depth m 0.61 0.50 0.02 0.10 1.60
Water velocity m/s 0.10 0.02 0.01 0.00 0.90

Table 2. Selected environmental variables and deviance explained in GAMs for Myriophyllum spicatum and Hydrilla verticillata.

Species Environmental variable Significance (p-value) Deviance explained

Myriophyllum spicatum

Chlorophyll a <0.001

28.7%

Nitrate nitrogen 0.003
Suspended solids <0.001
Water temperature 0.034
Water depth 0.030
Water velocity 0.010

Hydrilla verticillata
Electrical conductivity <0.001

23.4%Suspended solids 0.010
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situ observations of the 41 sites were randomly performed to
evaluate the accuracy of the model for field verification.

3 Results

3.1 GAM response curves

We defined the ranges of environmental factors with
respect to species occurrences. The models explained 28.7%
and 23.4% of the observed variation in selected variables for
M. spicatum and H. verticillata, respectively (Tab. 2). For M.
spicatum, we found that chlorophyll a, nitrate nitrogen,
suspended solids, water temperature, water depth, and water
velocity were significant variables in the GAM. Based on the
response curves, the probability of M. spicatum presence
increased as nitrate nitrogen increased, and decreased as water
temperature and suspended solids increased (Fig. 2A). The
response curves for chlorophyll a indicated a sharp increase in
the predicted presence of M. spicatum from 0 to ∼20mg/m3

and a decline at higher concentrations. The presence

probabilities of M. spicatum for water velocity decreased
for values of up to ∼0.4m/s and then increased in relatively
rapid flows. Myriophyllum spicatum was distributed in a wide
range of water depths up to 1m and decreased in deeper water.
Electrical conductivity and suspended solids were important
parameters determining the H. verticillata distribution (Tab.
2). Hydrilla verticillata presence was negatively related to
electrical conductivity and suspended solid concentrations
(Fig. 2B). We also observed differences in the predicted
potential habitats between the two species (Fig. 3). Myr-
iophyllum spicatum was widely distributed in the Han River
and Nakdong River, and its predicted distribution was similar
to its current distribution. Hydrilla verticillata was abundant
everywhere, whereas its distribution was predicted to be
decreased in Nakdong River and increased in Yeongsan River.

3.2 Model validation and field verification

To assess model performances for each species, we
compared predicted potential habitats with observed habitats

Fig. 2. Response curvesof (A)Myriophyllumspicatumand(B)Hydrillaverticillata forenvironmentalgradients inGAMs.Thevertical axes represent
theprobabilities of occurrence, and shadedbands showthe95%confidence interval.Rugplots on the x-axis showdatapoints.Chla, chlorophylla; EC,
electrical conductivity; NO3N, nitrate nitrogen; SS, suspended solids; WT, water temperature; WD, water depth; WV, water velocity.
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using the confusionmatrix (Tab. 3).We observed accuracy rates
of 0.74 for M. spicatum and 0.75 for H. verticillata. For M.
spicatum, we observed AUC=0.84 and kappa = 0.46 when we
applied a threshold of 0.536. For H. verticillata, we observed
AUC=0.79 and kappa= 0.39 when the threshold was 0.492.
Based on the field verification, we observed accuracy rates of
76% for the two species (Tab. 4). In addition, we established
AUCvalues of 0.75 forM. spicatum and 0.82 forH. verticillata,
and kappa values of 0.44 for M. spicatum and 0.25 for H.
verticillata.

4 Discussion

In this study, we identified factors that characterize the
suitable habitats of M. spicatum and H. verticillata using
GAMs, namely, chlorophyll a, electrical conductivity, nitrate
nitrogen, suspended solids, water temperature, water depth,
and water velocity. GAMs are very useful for describing the
complex relationships between response variables and
environmental factors (Cheng and Gallinat, 2004); however,
our models explained low proportions of deviance (Tab. 2).
This can be explained by the patchy distribution of submerged
macrophytes, which cannot be fully explained by the selected
variables (Lehmann, 1998). Nevertheless, based on the model
evaluation procedures, the response curves for each variable
enable us to infer general trends and we expect to adapt models
to other locations around the world.

4.1 GAM results and environmental factors

The abundance and distribution of submerged macrophytes
in river ecosystems are related to water quality conditions

(Nieder et al., 2004), water depth, and water velocity (Sousa,
2011). We found that variables associated with water
environmental factors were important determinants of the
distributions of M. spicatum and H. verticillata, especially
chlorophyll a, electrical conductivity, nitrate nitrogen,
suspended solids, water temperature, water depth, and water
velocity. Gradients of these variables also determine suitable
habitats for submerged macrophytes in previous studies
(Dodkins et al., 2005; Lacoul and Freedman, 2006; Franklin
et al., 2008).

Our results demonstrated that the occurrence ofM. spicatum
increased for low concentrations, and decreased for high
concentrations of chlorophyll a. In addition, the probability of
M. spicatum presence decreased aswater temperature increased.
A higher temperature within optimal ranges usually promotes a
higher chlorophyll a concentration and productivity as well as a
greater abundance of submerged macrophytes (Barko et al.,
1986). However, competition for light between aquatic plants
and phytoplanktonmay limit plant growth and even result in the
disappearance of taxa (Rybicki and Landwehr, 2007; Bornette
and Puijalon, 2011). Jones et al. (1983) also found that
phytoplankton-created low water clarity inhibits M. spicatum
growth. Furthermore, the adaptability of submerged macro-
phytes to low temperatures may play a role in interspecific
competition because the optimal water temperature for
submerged macrophytes is 28–32 °C (Barko et al., 1986).

The occurrence of H. verticillata was high when electrical
conductivity was low in oligotrophic water (Fig. 2B). This
agrees with the findings of Sousa et al. (2009) and Cook and
Lüönd (1982) who found H. verticillata develops well in
oligotrophic waters. Plant growth usually increases as the

Fig. 3. Predicted and observed habitat suitability of (A) Myriophyllum spicatum and (B) Hydrilla verticillata based on GAMs. Observed
occurrence (Ob.) is overlaid with the predicted occurrence (Pr.). The outer circle indicates the observed distribution, and the inner circle
represents the predicted distribution. Yellow indicates presence (1) and black indicates absence (0). The same color for the outer and inner circles
shows that observations and predictions coincide. A black outer circle with a yellow inner circle indicates a false positive, and a yellow outer
with a black inner circle indicates a false negative.
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concentration of nutrients in water and sediment increases
(Van et al., 1999; Yu et al., 2010; Sousa, 2011). Moreover,
Kennedy et al. (2009) found that H. verticillata can thrive not
only in eutrophic waters, but also in oligotrophic waters.
According to Sousa (2011), however, eutrophic conditions
may have negative effects on H. verticillata growth via the
proliferation of plankton, which compete with submerged
macrophytes for light and nutrients. Electrical conductivity, as
a measure of the chemicals summary variable (Heegaard et al.,
2001), may affect macrophyte composition and be unfavorable
for submerged macrophytes that are sensitive to eutrophication
(Thomaz et al., 2003; Lauridsen et al., 2015). The occurrence
of M. spicatum was high when nitrate nitrogen was high in
water (Fig. 2A). Nitrogen is a key element for aquatic plants,
which use nitrate as a nitrogen source (Bornette and Puijalon,
2011) and M. spicatum was related to with higher nitrate
availability (Ali and Soltan, 2006).

We detected abundant M. spicatum in water at depths of
0.7–1.0m, and a decreased abundance in deeper water (Fig.
2A). This result concurs with a previous study; Nichols and
Shaw (1986) reported that M. spicatum is typically found in
water ranging from 1 to 4m deep. Angradi et al. (2013)
observed that the optimal depth for submerged macrophytes is
∼1.2m and<1m in turbid conditions. However, an increase in
water depth causes a light deficiency for submerged macro-
phytes (Bornette and Puijalon, 2011), thereby decreasing the
rate of photosynthesis. Shallow water bodies allow more light
penetration, provided that the water is not turbid (Narumalani
et al., 1997). Lower water clarity owing to sediments, turbidity,
and nutrients can reduce the water depth and spatial
distribution for growth and survival of submerged macro-
phytes (Dar et al., 2014; Patrick et al., 2014). Consequently, as
depth increases or water clarity decreases, light availability for
photosynthesis may diminish (Lacoul and Freedman, 2006).

Based on the velocity response curve, we observed a
decrease inM. spicatum abundance for values of up to∼0.4m/s

and an increase for higher values (Fig. 2A). On the other hand,
M. spicatum has been found in the stream at water velocities of
2m/s (Nichols and Shaw, 1986). A number of water velocity
readings in this study were at 0m/s, with an average of 0.1m/s
and amedian of 0m/s. The regulated rivers and streams in study
sites were close to lentic conditions; accordingly, we could not
precisely evaluate the velocity response of M. spicatum.
However, in general, the biomass and richness of submerged
macrophytes are higher at 0.3–0.4m/s, and lower at higher
velocities because of failure to establish and colonize (Lacoul
and Freedman, 2006).Moderate flow can encourage submerged
macrophyte growth by continuously washing photosynthetic
tissues covered with epiphytic algae (Strand andWeisner, 1996;
Lehmann, 1998).

4.2 Model validation and field verification

We did not develop GIS-based predictive maps to identify
potential distribution for submerged macrophytes because it
was difficult to construct a bathymetric map of all rivers and
streams in South Korea. We present maps showing areas of
agreement between observations and predictions. Although we
did not generate spatial maps interpolated with predicted
probabilities, we were able to detect areas with abundant
submerged macrophytes in the five rivers and characterize the
suitable habitats of them.

Correct and incorrect predictions in a confusion matrix
indicate the strength of predictions (Peters et al., 2007). The
misclassified sites in the predicted distribution according to
GAMs were related to channel structure, rather than water
quality. Most of these sites were confluence points, i.e., sites at
which two channels met, each carrying independent influxes
and sediment discharge (Benda et al., 2004). To examine false
positive errors (commission error; observation = 0 and
prediction = 1), we considered the characteristics of survey
sites at confluence points that connected relatively larger

Table 3. Comparison of predicted and observed distributions of Myriophyllum spicatum and Hydrilla verticillata during model building.
Predicted values were obtained from the fitted probability of presence using the Youden index to apply a threshold probability: 0.536 for M.
spicatum and 0.492 for H. verticillata.

Species Contents Predicted absence Predicted presence Total

M. spicatum Observed absence 91 23 114
Observed presence 29 54 83
Total 120 77 197
Correct prediction (91þ 54)/197 = 0.74
Error of commission 23/114 = 0.20
Error of omission 29/83 = 0.35
AUC 0.84
Kappa 0.46

H. verticillata Observed absence 115 13 128
Observed presence 37 32 69
Total 152 45 197
Correct prediction (115þ 32)/197 = 0.75
Error of commission 13/128 = 0.10
Error of omission 37/69 = 0.54
AUC 0.79
Kappa 0.39
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tributaries to main water bodies. Confluences have been
described as biodiversity hot spots with physical heterogeneity
and habitat complexity owing to diverse physical, chemical,
and biological attributes resulting from tributary streams
(Kiffney et al., 2006; Rice et al., 2006). At these sites, we
expected to observe submerged macrophytes; however, their
distributions were discontinuous and bed sediment size and
flow properties were unstable (Rice et al., 2006). Slow velocity
conditions and the maintenance of stable substrates are
necessary for macrophytes colonization (Riis and Biggs,
2003). False positive results imply that submerged macro-
phytes did not have an opportunity to establish to a suitable
habitat (Buchan and Padilla, 2000).

We observed false negative errors (omission error;
observation = 1 and prediction = 0) at study sites that were
typically downstream of confluence points connecting
relatively small tributaries and irrigation ditches with the
potential for submerged macrophytes dispersal. Myriophyllum
spicatum and H. verticillata are found in rivers, lakes,
irrigation ditches, and other waterways (Netherland, 1997;
Eiswerth et al., 2000). Their primary dispersal strategy is
vegetative reproduction by fragmentation, moving through
small waterways and then establishing at channel junctions.
Vegetative reproduction by stem fragmentation is an efficient
mechanism for dispersal, colonization, and overwintering
(Sousa, 2011; Xie et al., 2013). The conditions downstream of
small tributaries are sufficiently stable for submerged macro-
phytes inhabitation. Submerged macrophytes habitats are
regulated by a variety of factors, varying within not only whole
streams, but also smaller stream reaches (Riis et al., 2001).

We observed high accuracy rates for each species model
(0.74 for M. spicatum and 0.75 for H. verticillata), but low
proportions of variation explained by the models. We observed
kappa values (which were dependent on a threshold) of 0.46
for M. spicatum and 0.39 for H. verticillata, indicating a fair

model fit. In addition, we observed AUC values (independent
of threshold values) of 0.84 for M. spicatum and 0.79 for H.
verticillata, indicating satisfactory predictive ability. Accord-
ing to the AUC and kappa values, model performance was
good for both species. Field verification to validate favorable
potential habitats forM. spicatum andH. verticillata confirmed
model performance, supporting their good prediction abilities,
based on accuracy rates, AUC, and kappa values, except for the
kappa value (0.25) of H. verticillata.

Although GAMs do not provide superior predictive
performance compared with other models such as multivariate
adaptive regression splines and boosted regression trees
(Austin, 2007), they are flexible enough to model relationships
between occurrences of submerged macrophytes and environ-
mental factors (Murase et al., 2009). Habitats for submerged
macrophytes are characterized by a complex set of physical,
chemical, and biological parameters. In this study, the
modeling of potential habitats for submerged macrophytes
was in good agreement, despite only considering water
chemicals, water depth, and water velocity. However, a
reasonable possibility of prediction errors is the reason why the
realized niches of submerged macrophytes were not complete-
ly explained by the variables that we selected and added to
GAMs. We measured water depth and water velocity once in
normal conditions, and we used water chemical data that were
averaged over four years. Even though a lack of long-term
monitoring data for water depth and velocity at the study sites
is a source of uncertainty, we were able to overcome
uncertainties by surveying diverse environmental conditions,
varying from tributaries to rivers.

Buchan and Padilla (2000) found that the most important
factors affecting the presence–absence of submerged macro-
phytes were associated with water quality rather than with
dispersal potential. Nonetheless, to improve the predictive
accuracy, it is also necessary to consider physical factors, such

Table 4. Comparison of predicted and observed distributions of Myriophyllum spicatum and Hydrilla verticillata at the model confirmation
stage. Predicted values were obtained from the fitted probability of presence using the Youden index to apply a threshold probability: 0.536 for
M. spicatum and 0.492 for H. verticillata.

Species Contents Predicted absence Predicted presence Total

M. spicatum Observed absence 23 6 29

Observed presence 4 8 12
Total 27 14 41
Correct prediction (23þ 8)/41 = 0.76
Error of commission 6/29 = 0.21
Error of omission 4/12 = 0.33
AUC 0.75
Kappa 0.44

H. verticillata Observed absence 28 2 30
Observed presence 8 3 11
Total 36 5 41
Correct prediction (28þ 3)/41 = 0.76
Error of commission 2/30 = 0.07
Error of omission 8/11 = 0.73
AUC 0.82
Kappa 0.25
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as flow regime, channel connectivity, channel slope, channel
bed, shoreline conditions, and land cover type in the basin
(Buchan and Padilla, 2000; Patrick et al., 2014). Biological
factors, including competition, herbivory, and disease, are also
important habitat determinants (Lacoul and Freedman, 2006).
No habitat suitability model is a complete representation of
reality and these models should be validated for applications
using real-world data by predictive performance evaluations
focusing on the reduction of omission errors (Liu et al., 2009;
Gastón and García-Viñas, 2013). The distribution of M.
spicatum and H. verticillata with high invasiveness could not
be compared before and after water regulation in South Korea;
however, we are able to predict the distribution using water
quality data and adapt the models throughout the world.

4.3 Perspectives

We inferred the habitat characteristics of M. spicatum and
H. verticillata using GAMs based on field survey data at the
catchment scale. We observed that water chemicals, e.g.,
chlorophyll a, suspended solids, nitrate nitrogen, water
temperature, and electrical conductivity are important factors
determining the occurrences of submerged macrophytes.
Moreover, we validated the developed models by applying
independent field data. Our research has practical implications
for the prevention or delay of the aggressive spread of M.
spicatum and H. verticillata by providing a basis for river
management strategies, such as information about water
chemicals to improve water quality in priority areas (Barko
et al., 1986). These results are also helpful to sustain aquatic
ecosystem functions and biodiversity in regulated hydrological
conditions by identifying priority areas for monitoring and
management.

Supplementary Material

Supplementary Tables.
The Supplementary Material is available at https://www.kmae-
journal.org/10.1051/kmae/2017044/olm.
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