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Abstract The steroidal hormone brassinosteroids (BRs)

play important roles in plant growth and development.

Genetic, genomic and proteomic studies in Arabidopsis have

identified major BR signaling components and elucidated the

signal transduction pathway from the cell surface receptor

kinase BRI1 to the BES1/BZR1 family of transcription

factors. BRs interact with other plant hormones in coordi-

nating gene expression and plant growth and development.

In this review, we provide an update on the latest progress in

characterizing the BR signaling network and discuss its

interactions with other hormone pathways in determining

yield component traits and in regulating stress responses.
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Introduction

Brassinosteroids (BRs) are a class of plant steroidal hor-

mones that are involved in the regulation of multiple

developmental and physiological processes essential for

plant vegetative and reproductive growth and development,

including cell elongation and division, vascular differentia-

tion, senescence, flowering time, male fertility, pollen

development, seed size, photomorphogenesis, and resistance

to biotic and abiotic stresses (Clouse et al. 1996; Li

and Chory 1999; Ye et al. 2010; Clouse 2011). BR-deficient

or -insensitive mutants generally display altered phenotypes,

such as dwarfism, abnormal vascular development, dark-

green leaves, delayed flowering and senescence, reduced

male fertility and seed germination, and de-etiolation in the

dark (Clouse et al. 1996; Li et al. 1996; Szekeres et al. 1996;

Noguchi et al. 1999; Steber and McCourt 2001). During the

last two decades, BR mutants have been identified in Ara-

bidopsis (Clouse et al. 1996; Li et al. 1996; Li and Chory

1999; Clouse 2011) and various crop species, including rice

(Oryza sativa) (Yamamuro et al. 2000; Hong et al. 2005),

tomato (Solanum lycopersicum) (Koka et al. 2000; Montoya

et al. 2002), barley (Hordeum vulgare) (Chono et al. 2003),

pea (Pisum sativum) (Nomura et al. 2003), and maize (Zea

mays) (Hartwig et al. 2011; Makarevitch et al. 2012). In rice,

a model monocot and major crop, leaf angles increase in

response to exogenously applied BRs. In BR-deficient rice,

reduced leaf angle (i.e., more erect leaves) can greatly

increase grain yield by allowing increased planting densities,

less canopy shading, and higher light capture for improved

photosynthetic capacity (Sakamoto et al. 2006). On the

other hand, overexpression of a BR biosynthetic gene in rice

led to increased BR levels and promoted grain yield by as

much as 40 % which was attributed to increased seed size

(Wu et al. 2008). Further characterization of BR signaling in

rice and other crops, particularly cereals, will likely

uncover novel mechanisms that could be used for crop

improvement or provide insight into the evolution of BR

signaling.
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Extensive genetic and molecular studies have helped

elucidate the BR signaling pathway and major signaling

components in Arabidopsis. In summary, BRs directly bind

to the receptor-like kinase BRASSINOSTEROID-INSEN-

SITIVE 1 (BRI1) at the cell surface and activate a signal

transduction cascade that leads to activation of two key

transcription factors, BRASSINAZOLE-RESISTANT1

(BZR1) and BRI1-EMS-SUPPRESSOR 1 (BES1), also

known as BZR2 (Wang et al. 2002). These two transcrip-

tion factors directly regulate BR-responsive gene expres-

sion and plant growth and development (Fig. 1) (Kim and

Wang 2010; Sun et al. 2010; Yu et al. 2011). Several

important signaling components and the underlying

mechanisms of BR perception and signal transduction,

from receptor kinase activation to transcriptional networks,

have been identified by proteomic and genetic approaches

in Arabidopsis and rice (Clouse 2011; Tong and Chu

2012). In addition, proteomic analyses and genome-wide

transcriptional analyses, such as chromatin immunopreci-

pitation-microarray (ChIP-chip), have made significant

progresses in identifying and characterizing a large number

of BES1 and BZR1-targeted genes. The transcriptional

networks, either regulated by BRs alone or through inter-

actions among BRs and other phytohormones in coordi-

nating gene expression and plant developmental processes,

are also well characterized in both Arabidopsis and rice

(Deng et al. 2007; Tang et al. 2008a; Sun et al. 2010; Wang

et al. 2010; Yang et al. 2011; Yu et al. 2011; Choudhary

et al. 2012b; Tong and Chu 2012; Wang et al. 2012c).

Furthermore, the BR biosynthetic pathway is well estab-

lished, and several key BR biosynthetic regulators have

been characterized in Arabidopsis and rice (Fujioka and

Yokota 2003; Zhao and Li 2012).

Here, we provide an update on the latest progress in

characterizing the BR signaling network as well as BR

interactions with other hormones in coordinating gene

expression and plant growth and development. In addition,

we discuss the effects of BRs and interactions of BRs with

other hormones in determining yield component traits in

various crop species. Finally, regulation of stress responses

by BRs alone or in coordination with other hormones is

also reviewed.

BR signaling pathway

BR perception and receptor kinases

In plants, the BR signal is perceived by BRI1, which is a

plasma membrane localized leucine-rich repeat (LRR)

receptor-like kinase. It is composed of a large extracellular

ligand-binding domain of 25 LRRs, a 70-amino acid island

domain between LRR21 and LRR22, a single trans-

membrane domain, and a cytoplasmic domain with kinase

activity (Li and Chory 1997; He et al. 2000; Wang et al.

2001; Kinoshita et al. 2005). Recent structural studies have

confirmed the role of BRI1 as a plasma membrane receptor

for BRs (Hothorn et al. 2011; She et al. 2011). In the

absence of BRs, BRI1 is inactive as a homodimer, due to

its binding with the negative regulator BRI1 KINASE

INHIBITOR 1 (BKI1) through its cytoplasmic domain

(Wang and Chory 2006). In the presence of BRs, BR

binding activates BRI1 kinase activity, through association

with its co-receptor kinase BRI1-ASSOCIATED RECEP-

TOR KINASE 1 (BAK1)/SOMATIC EMBRYOGENESIS

RECEPTOR KINASE3 (SERK3) (Li et al. 2002; Nam and

Li 2002; Russinova et al. 2004) and phosphorylation of

BKI1 on Tyr211, leading to the disassociation of BKI1

from the plasma membrane (Wang and Chory 2006; Jail-

lais et al. 2011). Phosphorylated BKI1 can also interact

with the phosphopeptide-binding proteins 14–3–3s and

relieve its inhibition of BES1 and BZR1 (Wang et al.

2011). A recent study showed that Ser270 and Ser274 in

the C-terminal region of BKI1 are required for subsequent

phosphorylation of Tyr211 and the subsequent dissociation

of BKI1 (Wang et al. 2011). Phosphorylation sites at Ser/

Thr and Tyr of both BRI1 and BAKI have been identified

through phosphorylation site mapping and functional

studies. A sequential transphorylation model has been

proposed, in which BR binding to BRI1 activates its kinase

activity through autophosphorylation and then phosphory-

lates and activates BAK1, which in turn phosphorylates

BRI1 at the juxtamembrane and C-terminal domains to

fully activate BRI1 kinase activity (Wang et al. 2005,

2008b; Clouse 2011). Besides BAK1/SERK3, SERK4 has

been designated BAK1-LIKE 1 (BKK1) as it functions

redundantly with BAK1 (Roux et al. 2011). Recent genetic

and biochemical evidence also demonstrated that SERK1,

SERK2 and SERK4 are all possible BAK1-redundant

proteins that are required for BR signaling in Arabidopsis

(Gou et al. 2012).

Inhibitors, kinases, and phosphatase

Activated BRI1 phosphorylates the receptor-like cytoplas-

mic kinases (RLCKs), BR SIGNALING KINASES (BSKs)

and CONSTITUTIVE DIFFERENTIAL GROWTH 1

(CDG1), which then activate a phosphatase, BRI1-SUP-

PRESSOR 1 (BSU1) (Tang et al. 2008b; Kim et al. 2011).

CDG1 was recently shown to function much like BSKs (Kim

et al. 2011). BRI1 phosphorylates Ser230 of BSK1 and

Ser234 of CDG1. Phosphorylated BSK1 and CDG1 then

activate BSU1 (Kim et al. 2009, 2011). BSU1 in turn inac-

tivates the negative regulator, a glycogen synthase kinase 3

(GSK3)/Shaggy-like kinase named BRASSINOSTEROID-

INSENSITIVE 2 (BIN2) through dephosphorylation (Choe
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et al. 2002; Li and Nam 2002; Kim et al. 2009; Yan et al.

2009). Genetic evidence suggests that BSU1 may directly

dephosphorylate and inactivate BIN2 at Tyr200, which is the

BIN2 autophosphorylation site necessary for BIN2 function

(Kim et al. 2009).

Signal transduction to BES1 and BZR1 transcription

factors

Inhibition of BIN2 and the action of the protein phos-

phatase 2A (PP2A) lead to the dephosphorylation and

activation of two homologous transcription factors, BES1

and BZR1 (Wang et al. 2002; Zhao et al. 2002; He et al.

2002, 2005; Yin et al. 2002, 2005; Ryu et al. 2007; Tang

et al. 2011). BES1 and BZR1 share 88 % identity in their

amino acid sequences. They are predicted to have a basic

HELIX–LOOP–HELIX (bHLH)-like DNA binding motif

with functional redundancy but each has distinctive

functions (He et al. 2005; Yin et al. 2005). PP2A was

shown in a recent study to directly bind and dephos-

phorylate BZR1 (Tang et al. 2011). Dephosphorylated and

activated BES1 and BZR1 subsequently translocate from

cytoplasm into the nucleus where they regulate BR-

responsive gene expression. In the absence of BRs, BIN2

phosphorylates BES1 and BZR1 at their phosphorylation

domains containing more than 20 putative phosphoryla-

tion sites. BIN2 phosphorylation at different sites inhibits

BES1 and BZR1 function through various mechanisms,

including interference with DNA binding, cytoplasmic

retention by interaction with 14-3-3s, and proteasome-

mediated protein degradation (He et al. 2002; Bai et al.

2007; Gampala et al. 2007; de Vries 2007; Ryu et al.

2010; Ye et al. 2011).

BES1 and BZR1 regulated network

Genome-wide transcriptional analyses, including micro-

array and ChIP-chip, have identified large numbers of

Fig. 1 Brassinosteroid signaling pathway in the absence (left half) or

presence (right half) of BRs in Arabidopsis. In the absence of BRs,

BRI1 is inactive due to its binding with the negative regulator BKI1.

BIN2 phosphorylates and inactivates BES1 and BZR1, leading to

export of BES1 and BZR1 from the nucleus, cytoplasmic retention by

interaction with 14–3–3s, and proteasome-mediated protein degrada-

tion. In the presence of BRs, BRs binding to BRI1 activates BRI1

kinase activity, including the association with its co-receptor kinase

BAK1 and also disassociation of BKI1. Activated BRI1 phosphor-

ylates BSK1/CDG1, which then activates the phosphatase BSU1.

Activated BSU1 in turn dephosphorylates and inactivates BIN2.

Inhibition of BIN2 and the action of PP2A dephosphorylate and

activate BES1 and BZR1. Activated BES1 and BZR1 subsequently

translocate from cytoplasm into the nucleus where they regulate BR-

responsive gene expression. Circles with P represent phosphate

residues
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BES1 and BZR1-targeted genes (Sun et al. 2010; Yu et al.

2011). Previous studies showed that BZR1 mainly binds to

the BR-response element (BRRE) (CGTGT/CG) that is

enriched in BR-repressed genes, repressing gene expres-

sion, and BES1 mainly binds to the E-Box element

(CANNTG) that is mostly enriched in BR-induced genes,

activating target gene expression (He et al. 2005; Yin et al.

2005). Recently, studies showed that both BES1 and BZR1

can bind to the BRRE and the E-box elements, functioning

similarly either to activate or repress gene expression (Sun

et al. 2010; Yu et al. 2011). Further investigations into

BES1 and BZR1 binding elements and their interactions

with other proteins to function as activators or repressors

are needed. BES1 has been shown to interact with other

transcription factors to promote gene expression, including

the bHLH factor BES1-INTERACTING MYC-LIKE 1

(BIM1), two Jumonji domain-containing proteins, EARLY

FLOWERING 6 (ELF6) and its homolog RELATIVE OF

EARLY FLOWERING 6 (REF6), the MYB factor

MYB30, and components involved in RNA polymerase II

functioning, such as INTERACTING-WITH-SPT6–1

(IWS1) (Yin et al. 2005; Yu et al. 2008; Li et al. 2009b,

2010). A recent study showed that MYELOBLASTOSIS

FAMILY FACTOR LIKE-2 (MYBL2) cooperates with

BES1 to inhibit BR target-gene expression (Ye et al. 2012).

Other recent studies also reported interactions between

BES1/BZR1 and several other proteins, including DELLA

proteins involved in negative regulation of gibberellin

response and PHYTOCHROME-INTERACTING FAC-

TOR (PIF), to regulate gene expression and plant growth,

which will be discussed in the following sections (Bai et al.

2012b; Gallego-Bartolome et al. 2012; Oh et al. 2012a).

BR signaling in rice

BR biosynthesis and signaling are well understood in

Arabidopsis. In rice, identification of a series of BR sig-

naling components that are orthologous to those in Ara-

bidopsis suggests that the BR signaling pathway is largely

conserved among plants. OsBRI1 and OsBAK1, ortholo-

gous to the Arabidopsis BRI1 and BAK1, respectively,

have been shown to be receptor kinases perceiving BR

signals (Yamamuro et al. 2000; Li et al. 2009a). OsGSK1

in rice is an ortholog of BIN2 and functions as a negative

regulator in BR signaling (Koh et al. 2007). OsBZR1, the

closest ortholog of both BES1 and BZR1, functions as a

positive regulator of BR response that interacts with 14-3-

3s and translocates from the cytoplasm to the nucleus in

response to BRs (Bai et al. 2007; Yu et al. 2011). The rice

DWARF AND LOW-TILLERING (DLT), which belongs

to the GRAS family of transcription factors, has also been

proved to be a positive regulator involved in BR signaling.

The dlt mutant displayed a typical BR loss-of-function

dwarf phenotype, and overexpression of DLT conferred an

enhanced BR-response phenotype with hypersensitivity to

exogenous BRs in lamina-inclination experiments (Tong

and Chu 2009, 2012). GSK2, a GSK3-like kinase in rice,

has been shown to be an ortholog of BIN2 and functions as

the rice counterpart of BIN2 in Arabidopsis. GSK2 phos-

phorylates DLT both in vitro and in vivo (Tong et al.

2012). These findings further confirm the conservation of

BR signaling between Arabidopsis and rice, in which DLT

or BES1 and BZR1 act as direct targets of the GSK3-like

kinase (BIN2/GSK2) to mediate many of the BR responses.

BR homeostasis and signaling attenuation

As with other plant hormones, including abscisic acid

(ABA), auxins, cytokinins, ethylene, and gibberellins

(GA), in vivo regulation of BR homeostasis is critical to

ensure normal plant growth and development under various

environmental conditions. As shown from a study in pea,

BRs were unable to be transported over long distances

(Symons and Reid 2004). This suggests that plants need to

precisely regulate BR biosynthesis and inactivation to

maintain an appropriate internal active BR levels in various

organs and tissues or at different developmental stages

(Zhao and Li 2012).

The BR biosynthetic pathway has been well character-

ized in both Arabidopsis and rice. In Arabidopsis, a series

of key BR biosynthetic genes has been identified, including

DEETIO-LATED2 (DET2), CONSTITUTIVE PHOTO-

MORPHOGENIC DWARF (CPD), ROTUNDIFOLIA3

(ROT3), DWARF4 (DWF4), and BR-6-OXIDASE1

(BR6ox1) (Li et al. 1996; Szekeres et al. 1996; Choe et al.

1998; Shimada et al. 2001; Kim et al. 2005). Levels of

endogenous BRs regulate the expression of these genes to

maintain optimal concentrations through a feedback loop

(Mathur et al. 1998; Mussig et al. 2002). Several biosyn-

thetic genes in rice, such as D2, D11, and BRD1, have been

identified (Hong et al. 2002; Hong et al. 2003; Tanabe et al.

2005). RAV-LIKE 1 (RAVL1), a transcription factor

containing a B3 DNA binding domain that positively reg-

ulates the expression of OsBRI1, activates the expression of

these biosynthetic genes (D2, D11, and BRD1) via binding

to the E-box motif within their promoter regions (Je et al.

2010). BR biosynthetic mutants have also been reported

recently in maize (Hartwig et al. 2011; Makarevitch et al.

2012).

The inactivation of BRs is mainly achieved through

hydroxylation, glycosylation, and sulfonation (Hategan

et al. 2011). The cytochrome P450 protein encoded by

PHYB ACTIVATION TAGGED SUPPRESSOR1 (BAS1)

has been shown to inactivate BRs (Neff et al. 1999; Turk

et al. 2005). DWF4 and CPD are involved in rate-limiting
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processes of steroid C-22a and C-23a hydroxylation to

control endogenous BR homeostasis (Kim et al. 2006).

Recent studies in Arabidopsis provided novel insights into the

involvement of the BAHD acyltransferase family (benzyl-

alcohol O-acetyltransferase, anthocyanin O-hydro-

xycinnamoyltransferase, anthranilate N-hydroxycinnamoyl/

benzoyltransferase, and deacetylvindoline 4-O-acetyltrans-

ferase) (D’Auria 2006) in the regulation of endogenous BR

homeostasis (Roh et al. 2012; Wang et al. 2012a). Two

BAHD family acyltransferase-like genes, BIA1 (Roh et al.

2012) and ABS1 (Wang et al. 2012a), have also been shown to

be involved in the inactivation of BRs, possibly through

acylation.

In addition to negative regulations discussed before,

several recent studies expanded our understanding of how

BRI1-mediated regulation is involved in the attenuation of

BR signaling. For instance, Wu et al. (2011) showed that

methylation of PP2A can dephosphorylate BRI1, which

results in BRI1 degradation and subsequent termination of

BR signaling. Irani et al. (2012) developed a fluorescently

labeled BR that enabled visualization of receptor-ligand

complexes between BRI1 and BRs for the first time in

plants. They demonstrated that endocytosis is a major factor

that leads to BR signal attenuation and receptor degrada-

tion. Autophosphorylation of BRI1 at Ser891 in the kinase

domain is also known to be one of the critical deactivation

mechanisms that inhibit BRI1 activity and BR signaling

(Oh et al. 2012c). Finally, Arabidopsis calmodulin was

found to bind to BRI1 in a Ca2?-dependent manner and may

attenuate the kinase activity of BRI1 (Oh et al. 2012b).

Interaction of BRs and other phytohormones

BRs interact with many other plant hormones, such as

ABA, GA, auxin, cytokinin, jasmonic acid (JA), salicylic

acid (SA), and ethylene, to regulate numerous plant bio-

logical processes in a coordinated manner. Interactions of

BRs and each of the other classes of phytohormones were

the subject of a recent detailed review by Choudhary et al.

(2012b). Thus, in our review, we intend only to emphasize

the most recent progresses.

Auxin

BRs and auxins function synergistically to improve plant

growth responses and transcriptional regulation (Nemhauser

et al. 2004; Vert et al. 2008). Physiological studies showed

that BRs can enhance auxin-induced growth responses,

including root development, hypocotyl elongation, laminar

inclination, and shoot gravitropism (Yokota et al. 1992; Bao

et al. 2004; Li et al. 2005; Nakamura et al. 2006; Vanden-

bussche et al. 2012). Comprehensive, genome-wide

microarray analyses in Arabidopsis have identified a large

number of common genes that are induced by both BRs and

auxins (Goda et al. 2004; Nemhauser et al. 2004). Identifi-

cation of BES1 and BZR1 target genes also showed that

many auxin-responsive genes are regulated by these BR-

regulated transcription factors (Sun et al. 2010; Yu et al.

2011).

Auxins regulate target gene expression through two types

of transcription regulators, AUXIN RESPONSE FACTOR

(ARF) and AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA).

Auxin-induced degradation of Aux/IAAs releases ARFs,

which activate target gene expression (Tiwari et al. 2001;

Hagen and Guilfoyle 2002). BR-auxin crosstalk has been

demonstrated in a study in which BRs continuously induced

the expression of two ARF/Aux family members, IAA19 and

IAA5 (Nakamura et al. 2003). Expression of a BR biosyn-

thetic gene, CPD, is activated by an auxin-inducible tran-

scription factor BREVIS RADIX (BRX) (Mouchel et al.

2006). And expression of another BR biosynthetic gene,

DWARF4, is upregulated by auxin (Chung et al. 2011;

Yoshimitsu et al. 2011). Direct molecular connections

between BRs and auxin signaling were revealed via the

direct interaction of BIN2 and ARF2. Phosphorylated BIN2

directly inactivates ARF2, which is a negative regulator of

cell elongation (Vert et al. 2008). Another molecular link

connecting BRs and auxins is that BZR1 directly binds to the

promoter region of both IAA19 and ARF7. BZR1 represses

IAA19 expression and induces ARF7 expression, leading to

ARF7 accumulation and downstream gene expression,

which regulates Arabidopsis seedling morphogenesis in the

dark (Zhou et al. 2012).

Additional evidence of BR-auxin interactions is through

the receptor BRI1. Sakamoto et al. (2013) found that auxin

stimulates BR perception by increasing the amount of rice

BR receptor OsBRI1. Exogenous application of IAA (a

bioactive auxin) induced a transient upregulation of Os-

BRI1 expression. They determined (Sakamoto et al. 2013)

that the promoter of OsBRI1 contains an auxin response

element (AuxRE) motif essential for ARF binding and,

thus, for the increased expression of OsBRI1 by IAA. The

expression of a primary BR-responsive gene, BR

UNREGULATED 1 (BU1), was also increased by IAA

treatment, indicating that auxin-induced OsBRI1 expres-

sion affects BR signaling by upregulating downstream BR-

responsive gene expression (Sakamoto et al. 2013).

In addition, the actin cytoskeleton was recently reported

to play an essential role in integrating BR signaling and BR-

mediated auxin response. Arabidopsis ACTIN2 mutant act2-

5 produces an altered actin cytoskeleton phenotype with

constitutive BR-mediated auxin responses. The upregulation

of BR-responsive genes in the mutant corresponds to the

accumulation of the dephosphorylated form of BZR1 (Lanza

et al. 2012).
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GA

Both BRs and GA are involved in regulation of plant

photomorphgenesis and other developmental processes,

including cell elongation, flowering, and seed germination.

Recent studies established a direct connection between

BRs and GA through a DELLA-BZR-PIF module, which

regulates a broad spectrum of light-response components.

DELLA, a family of five proteins in Arabidopsis that

negatively controls plant growth, is a target of gibberellin

receptor GIBBERELLIN INSENSITIVE DWARF1

(GID1) for degradation by proteasomes. Two recent studies

(Bai et al. 2012b; Gallego-Bartolome et al. 2012) inde-

pendently verified that a physical interaction occurred both

in vitro and in vivo between DELLA proteins and the

BZR1 transcription factor. They demonstrated that a

DELLA protein GIBBERELLIC ACID-INSENSITIVE

(GAI), which is a major negative regulator of the GA-

signaling pathway, physically binds to BZR1 to prevent it

from binding to target promoters, and the degradation of

DELLA releases BZR1 to promote hypocotyl elongation.

The dark- and heat-activated transcription factor PHYTO-

CHROME-INTERACTING FACTOR 4 (PIF4) has also

been found to physically interact with BZR1 both in vitro

and in vivo (Oh et al. 2012a). BZR1 and PIF4 can form a

heterodimer that synergistically regulates the expression of

thousands of common target genes, including HLH pro-

teins of the PRE family that are positive regulators of cell

elongation (Lee et al. 2006; Wang et al. 2009; Zhang et al.

2009; Bai et al. 2012a).

A model for BR and GA interaction in the regulation of

light response has thus been established, based on the

evidence presented above (Bai et al. 2012b; Gallego-

Bartolome et al. 2012; Oh et al. 2012a). GA-mediated

DELLA degradation inactivates both BZR1 and PIF4,

preventing them from binding to their target genes. A

genome-wide gene-expression analysis by RNA-sequenc-

ing (RNA-Seq) demonstrated that BZR1 and PIF4 can both

independently and interdependently regulate GA-respon-

sive gene expression. These findings together established

the important role of the highly integrated module of

DELLA-BZR1-PIFs in connecting the BR-GA interaction,

and also in mediating plant growth and response to envi-

ronmental signals (Bai et al. 2012b; Gallego-Bartolome

et al. 2012; Oh et al. 2012a).

Other phytohormones

Interactions between BRs and other phytohormones, such

as ABA, JA, cytokinins, and ethylene, have been described

extensively in a recent review (Choudhary et al. 2012b).

The latest research findings (not included in Choudhary

et al. 2012b) have expanded our understanding of BRs in

modulating plant growth by crosstalking with other

phytohormones.

The crosstalk between BR and SA has been shown to be

mainly involved in regulation of plant response to envi-

ronmental stresses. Specifically, BR-induced Arabidopsis

tolerance to salt and high temperature is mediated by a

major SA regulatory protein NONEXPRESSOR OF

PATHOGENESIS-RELATED GENES1 (NPR1) (Divi

et al. 2010). Recent studies showed that application of BRs

and SA together can enhance plant salt tolerance in Bras-

sica (Hayat et al. 2012).

An antagonistic relationship between BRs and JA in

controlling plant growth was reported by Ren et al. (2009),

where BRs negatively regulated JA-induced inhibition of

root growth in Arabidopsis. Recently, BRs were shown to

antagonize the JA-signaling pathway in a reciprocal man-

ner in rice to suppress plant defense against root-knot

nematodes (Nahar et al. 2013). Application of exogenous

BRs suppressed the expression of two important genes in

the rice JA-signaling pathway, ALLENE OXIDE SYN-

THASE (OsAOS2) and JA-INDUCIBLE RICE MYB (OsJ-

AMYB). In contrast, exogenous JA application suppressed

BR-related gene expression. Notably, this mutual antago-

nism is accompanied by an enhanced susceptibility to root-

knot nematode infection (Nahar et al. 2013). These findings

also demonstrated the negative role of the BR-signaling

pathway in innate immunity in rice.

The involvement of BRs in the regulation of cytokinin

levels in wheat seedlings was reported recently (Yuldashev

et al. 2012). Furthermore, BRs interact with ethylene and

auxin to control shoot gravitropism in Arabidopsis (Van-

denbussche et al. 2012). Interaction between BRs and

ethylene in the regulation of ethylene-induced hyponastic

growth was also observed in Arabidopsis (Polko et al.

2013). Finally, Trupkin et al. (2012) identified the cyclo-

philin gene ROTAMASE CYCLOPHILIN 1 (ROC1) as a

mediator of the crosstalk between phytochrome/crypto-

chrome signaling and BR response. Expression of ROC1

was increased by activation of phytochrome/cryptochrome,

which reduces BES1 activity and BES1 targeted gene

expression, and therefore, reduces the sensitivity to BRs

and seedling de-etiolation. On a related note, BR interac-

tions with light signaling have been recently reviewed

(Wang et al. 2012c) and will not be described herein.

BR signaling and yield

Increasing crop yield is the most important breeding goal

all over the world, especially for major cereal crops such as

rice, wheat, and maize. Crop yield is a complex polygenic

trait involving various biological processes that interact

with environmental signals. BRs are thought to be a class
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of hormone with great potential to boost crop yield (Vriet

et al. 2012). Although synthetic BR analogs have been

applied to different species in attempts to boost yield, the

underlying molecular mechanisms behind observed chan-

ges are largely unknown. To understand BRs’ effect on

yield, one can dissect yield into many component traits. In

rice, for example, yield components are divided into plant

density, panicle number per plant, grain number per pani-

cle, and average grain weight (Vriet et al. 2012). All these

component traits are closely related to BR-regulated phe-

notypes, such as dwarfism and leaf angle (which affect

plant density), tiller number (which affects panicle num-

ber), and response to environmental cues (which can

strongly affect grain number and quality). Following are

the latest advances in our understanding of BR signaling-

mediated contributions to increasing yield.

Leaf bending

Leaf bending in response to BRs has been used to increase

crop yield, mainly through the modification of plant

architecture (Sakamoto 2006; Sakamoto et al. 2006). For

instance, BR-deficient rice plants display erect leaf angles,

which allow increased plant density, resulting in higher

yield (Wang et al. 2008a). A recent study has identified

LEAF AND TILLER ANGLE INCREASED CONTROL-

LER (LIC) as a negative regulator that functions as an

antagonistic transcription factor of OsBZR1 to repress the

BR-signaling pathway in rice (Zhang et al. 2012). LIC

gain-of-function mutants displayed erect leaves and

reduced BR sensitivity. OsBZR1 shares similar functions

with its closest ortholog of Arabidopsis BES1 and BZR1

(Bai et al. 2007). Like BZR1, LIC is phosphorylated by

GSK1/BIN2. In rice, two antagonizing HLH/bHLH factors,

INCREASED LEAF INCLINATION 1 (ILI1) and ILI1

BINDING bHLH (IBH1), have been shown to function

downstream of OsBZR1 to regulate cell elongation and leaf

bending. BZR1 mainly binds to IBH1 to affect the balance

of these two factors (Zhang et al. 2009). LIC strongly binds

to BZR1 and ILI1 but weakly to IBH1 and antagonizes

BZR1 in controlling BR-mediated leaf bending in rice

(Zhang et al. 2012).

Organ boundary formation

BRs regulating specific developmental processes, such as

shoot regeneration and root meristem, have been reported

in Arabidopsis (Cheon et al. 2010; Gonzalez-Garcia et al.

2011; Hacham et al. 2011). A recent study by Gendron

et al. (2012) reported a novel role for BR signaling in plant

architecture by spatial regulation during the formation of

organ boundaries in Arabidopsis. In organ boundary cells,

BR-activated BZR1 inhibits the expression of CUP-

SHAPED COTYLEDON (CUC), which is required for

organ boundary formation, and results in organ-fusion

phenotypes. In wild-type Arabidopsis plants, BZR1 accu-

mulated at a relative low level in organ boundary cells to

allow normal organ development. In addition, the Arabid-

opsis boundary cell-specific transcription factor LATERAL

ORGAN BOUNDARIES (LOB) negatively regulates

accumulation of BRs in organ boundaries through tran-

scriptional activation of BAS1 (Bell et al. 2012).

Stomatal development

Stomatal development and regulation are closely associ-

ated with gas exchange in plant cells, which affects pho-

tosynthetic and water-use efficiencies. BRs’ regulation of

stomatal development was discovered recently. Kim et al.

(2012) reported that BRs negatively regulate stomatal

development by suppressing BIN2-mediated regulation of

YDA, a MAPK-kinase kinase (MAPKKK) involved in the

specific MAP-kinase pathway that regulates stomatal

development (Wang et al. 2007; Lampard et al. 2008). The

YDA-initiated MAPK pathway negatively regulates sto-

matal development by phosphorylating and degrading the

bHLH transcription factor SPEECHLESS (SPCH), which

acts downstream of the ERECTA family and regulates

stomatal lineage development (MacAlister et al. 2007). The

ERECTA family in Arabidopsis is composed of three

receptor-like kinases that control organ growth and floral

development by promoting cell proliferation (van Zanten

et al. 2009). BIN2 phosphorylates and inactivates YDA

both in vitro and in vivo. Increased levels of BRs induce

BR signaling through inactivation of BIN2 and therefore

activate the MAPK pathway, reducing stomatal production.

Interestingly, a conflicting study in Arabidopsis provided

evidence that BRs promote stomatal development down-

stream of YDA in the ERECTA receptor kinase pathway

through inhibition of BIN2-mediated phosphorylation and

degradation of SPCH (Gudesblat et al. 2012b). Conflicts

between these two studies regarding MAPK- and GSK3-

mediated signaling pathways reflect complex regulations of

plant development under different environmental or growth

conditions by BRs (Gudesblat et al. 2012a).

Cell elongation and proliferation

BRs’ role in regulating leaf cell elongation and prolifera-

tion has been well established in Arabidopsis (Gonzalez-

Garcia et al. 2011; Hacham et al. 2011; van Esse et al.

2012; Zhiponova et al. 2013). A recent study showed that

SHORT GRAIN1 (SG1) in rice affects both elongation of

grains and of internodes in rachis branches (Nakagawa

et al. 2012). Overexpression of SG1 produced BR-deficient

mutants, but with no reduction in cell size, suggesting that
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SG1 might control organ elongation by decreasing cell

proliferation via a mechanism that occurs downstream

of the BR response. Wang et al. (2012b) provided evi-

dence for the involvement of a microtubule regulatory

protein, MICROTUBULE DESTABILIZING PROTEIN40

(MDP40), in BR-mediated hypocotyl cell elongation. BR-

activated BZR1 directly targets and promotes the expres-

sion of the MDP40 gene, whose gene product acts on

destabilization of cortical microtubules and promotes

hypocotyl cell elongation. In addition, BRs have been

found to control ovule and seed number through the reg-

ulation of ovule-development-related genes by BZR1 in

Arabidopsis. BR-deficient or -insensitive mutants showed

lower seed number, smaller seed size, and abnormal seed

morphogenesis, while BR-enhanced mutants produced

more ovules and seeds (Huang et al. 2012).

BR signaling and stress tolerance

Exogenous application of BRs alone or coupled with other

hormones has been widely used in attempts to improve

crop yield and stress tolerance in various plant species

(Divi and Krishna 2009; Peleg and Blumwald 2011). For

instance, improved plant tolerance to biotic and abiotic

stresses, including bacteria, viruses, low temperatures,

drought, salt, Cu and peroxide, by the application of BRs

has been reported in rice, tobacco (Nicotiana tabacum),

cucumber (Cucumis sativus), Brassica juncea, and radish

(Raphanus sativus) (Krishna 2003; Nakashita et al. 2003;

Hu et al. 2005; Kagale et al. 2007; Divi and Krishna 2009;

Xia et al. 2009; Hayat et al. 2012). Recently, Villiers et al.

(2012) discovered connections for the first time between

BR signaling and plant response to the heavy metal, cad-

mium (Cd), in Arabidopsis. Contrary to the well-estab-

lished roles of BRs in improving plant tolerance, BR

treatment in Arabidopsis reduces cadmium tolerance. This

also contradicts the protective role of BRs against heavy

metal toxicity in other species, including Brassica juncea,

radish, tomato, and wheat (Hayat et al. 2007, 2010; Hasan

et al. 2011; Yusuf et al. 2011; Choudhary et al. 2012a).

The molecular mechanisms of BR-induced plant stress

tolerance remain poorly understood. Cui et al. (2012)

reported that an endoplasmic reticulum (ER) localized

Arabidopsis ubiquitin-conjugating enzyme UBC32 is an

essential factor involved in both BR-mediated growth pro-

motion and salt stress tolerance. In vivo data in Arabidopsis

showed that UBC32 is a functional component of the ER-

associated protein degradation (ERAD) pathway, which is an

important ubiquitin–proteasome system regulating plant

growth and development, known to contribute to plant salt

tolerance (Liu et al. 2011). UBC32 affects the accumulation

of BRI1 and connects the ERAD pathway to BR-mediated

growth promotion and salt stress tolerance. A recent study in

tomato revealed one possible mechanism of BR-induced

abiotic stress tolerance, especially for oxidative and heat

stress (Nie et al. 2012). BRs trigger apoplastic H2O2 accu-

mulation generated by NADPH oxidase, which is encoded

by the RESPIRATORY BURST OXIDASE HOMOLOG

1(RBOH1) gene. The RBOHs are involved in plant reactive

oxygen species (ROS) production and plant response to

various abiotic stresses (Marino et al. 2012). NADPH oxi-

dase in turn activates MAPKs, which play critical roles in

plant signal transduction during stress responses (Mittler

et al. 2004; Pitzschke et al. 2009), giving rise to increased

stress tolerance.

BRs have been shown to affect plant immunity response.

Microbial-associated molecular patterns (MAMP) are mol-

ecules that elicit defense responses, known either as

microbe- or pathogen-induced immunity (MTI or PTI).

Flagellin 22 (flg 22), a MAMP, binds to the Arabidopsis

LRR-RLKs FLAGELLIN-SENSING 2 (FLS2) to activate

the innate immune response (Chinchilla et al. 2007; Heese

et al. 2007; Schwessinger et al. 2011). BAK1, in addition to

being a coreceptor for BRI1, is also a coreceptor for FLS2. In

a pair of recently published reports (Albrecht et al. 2012;

Belkhadir et al. 2012), different conclusions were drawn on

the relationship between BR signaling and immunity

response. Albrecht et al. (2012) showed a unidirectional

inhibition of both the BAK1-dependent, FLS2-mediated

immune response as well as a BAK1-independent immune

response by BR perception through a yet unknown mecha-

nism, suggesting that BAK1 is not rate-limiting in these

pathways. In contrast, Belkhadir et al. (2012) showed that

overexpression of BRI1 in Arabidopsis reduced BAK1-

dependent, but not BAK1-independent immune responses,

suggesting that BRI1 competes for BAK1 with other MAMP

receptors. Their study, however, also showed a synergistic

interaction between BR signaling and immune response that

requires BAK1, suggesting a complex interplay between BR

signaling and immunity responses involving BAK1.

In rice, De Vleesschauwer et al. (2012) reported that BRs

also suppress rice root immunity to Pythium graminicola, a

soil-born oomycete that has been identified as one of the

factors causing rice yield decline in aerobic fields. The

authors demonstrated that P. graminicola exploits endoge-

nous BRs as virulence factors and disturbs host BR cellular

homeostasis to cause disease. And this BR-induced suscep-

tibility is driven, at least in part, by interfering with the

effective SA- or GA-mediated resistance to P. graminicola.

Future perspectives

Considering the importance of BRs in both model plants and

crop species, further investigations of key regulators in its

Plant Cell Rep

123



signaling pathway and the mechanisms underlying the whole

regulatory system are needed. The complete elucidation of

BR signaling and biosynthetic pathways in rice and other

major crop species will contribute to a better understanding

of the effects of BRs on important agronomic traits and their

potential use in genetic engineering for crop improvement.

More components that regulate BR biosynthesis and inacti-

vation and contribute to BR homeostasis are likely to be

identified. Considering the complex regulation of various

BR signaling components, additional components and/or

mechanisms are likely to be discovered, which may refine or

modify current models of BR signaling. Genome-wide

technologies should enable the dissection of the complex

regulatory network of BRs and their interactions with other

phytohormone and signaling pathways. The involvement of

thousands of BR target genes in BR responses requires large-

scale genomic studies and use of computational modeling to

illustrate the complex BR-regulatory network. The BR-

regulatory network and its underlying molecular mecha-

nisms can help us design optimal strategies to increase crop

yield and enhance performance under stress conditions.
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