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Plants’ ability to cope with the ever-changing environment is

one of the hallmarks that distinguishes plants from animals.

Plants stationed in one place have evolved to remodel their

architecture in response to the environmental factors by

continuously creating new organ systems and removing

existing organs through abscission. Herein, I provide insights

into developmental plasticity of plants, focusing on the exit

strategy (abscission). When plants start developing organs, the

elimination tactics are also established in the form of abscission

zones (AZ), that is, specialized cell layers for organ separation.

Herein, recent advances in understanding the spatial regulatory

mechanism of AZ in terms of cellular dynamics, coordination,

and reconfiguration of the physical barrier of the cell wall to

achieve precise abscission are discussed.
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Introduction
Plant cells are surrounded by and attached to a rigid

cellulosic extracellular matrix, the cell wall, which pro-

vides structural support to cells and tissues and plays an

integral role in cellular processes, such as proliferation,

differentiation, and defense [1,2]. Recent studies in floral

organ abscission in Arabidopsis have provided insights into

how the specific architecture is associated with cellular

function and how local cell wall modification could be

achieved [3��,4,5�]. Abscission occurs at a specific site,

the abscission zone (AZ), which is generally established at

the time of organ formation. When abscission is activated,

the dissociation of the cell wall takes place in the AZ,

resulting in organs’ separation [6]. Moreover, abscission
www.sciencedirect.com 
has been adopted in the processes of flower fall and seed

or fruit dispersal, making abscission an important aspect

in human food supply and plant fitness [7–11]. This

review focuses on the recent advances in mutual relation-

ship between cellular function and architecture using

organ abscission as a model system.

Main text of review
Coordination of layer-specific functions

Forward and reverse genetic screens using Arabidopsis
have helped identify the signaling components of abscis-

sion including plant hormones ethylene and auxin, pep-

tide ligand (IDA), receptor-like kinases HAESA (HAE)

and HAESA-like 2 (HSL2), and mitogen-activated

protein kinase cascades [12–16,17��], which were well

summarized in recent reviews [18–20]. Compared to

the well-identified signaling components that regulate

abscission in a timely manner, our understanding of the

cellular features and spatial regulatory mechanisms of

abscission remain limited. How several layers of cells

in AZ coordinate to dissolve middle lamellae and achieve

subsequent organ separation, how the specificity of each

layer is assigned, and how the cell wall remodeling is

restricted to a specific area remains unelucidated.

Recently, Lee et al. [3��] provided clues about layer-

specific coordination of cellular dynamics and cell wall

remodeling for precise abscission. In Arabidopsis, cell

separation occurs between two adjacent cell layers, result-

ing in an even surface on the plant body after abscission.

On the basis of the separating layer, AZ cells could be

distinguished into cells that remain at the plant body after

abscission and those that are attached to the shedding

organ, which were defined as residuum cells (RECs) and

secession cells (SECs), respectively [3��]. SECs and

RECs behave differently, presenting cell-type-specific

gene expression, ROS distribution, and cell wall modifi-

cation (Figure 1). Molecular mechanisms for these layer-

specific effects are not fully understood, but the research

has pointed out the importance of spatial regulation in

abscission and the necessity for investigating the layer

specificity of the abscission process.

Lee et al. [3��] suggested that cell-type-specific ROS

distribution plays an important role in maintaining spec-

ificity of abscission layers. The two neighboring cell

types, RECs and SECs, show different accumulation

patterns of ROS, high accumulation of superoxide

(O2

��) and hydrogen peroxide (H2O2), respectively.

When this ROS pattern is disturbed in nevershed (nev)
mutants, cell-type-specific activity is also affected [3��].
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(a)

(b)

Secession cells (SEC)
Lignin

Cuticle

Quiescent AZ Active REC/SEC Expansion of REC Protective layer

Cell Wall Enzymes

Current Opinion in Plant Biology

Illustrations of layer-specific cellular features and developmental transition of the abscission zone (AZ) in Arabidopsis flowers.

(a) A drawing of the floral AZ in Arabidopsis. AZ cells attached at the ‘cut surface’ of the abscised flower (secession cells, SECs) are distinguished

from AZ cells remaining at the receptacle (residuum cells, RECs) in terms of lignin formation and ROS distribution. H2O2 preferentially accumulates

at SECs, whereas superoxide accumulates at RECs. Lignin in SECs provides a physical barrier to confine the diffusion of cell wall enzymes, while

the cuticle on the RECs protects the exposed surface.

(b) A schematic model for developmental transition of AZ cells in Arabidopsis flowers. Activated AZ cells present layer-specific cellular activities

and architectures, though it is unknown as to when and how RECs and SECs are specified. Activated RECs undergo longitudinal expansion,

which may contribute to reducing the rigidity of the xylem by inducing stretching and rupture of the lignified structure. After abscission, RECs

become the outermost layer responsible for protecting against water loss and pathogen infection. Instead of forming protective layers associated

with periderm, RECs of Arabidopsis flowers protect the surface by transdifferentiating themselves into epidermal cells and sealing the surface with

cuticle.
In nev mutants, SEC-specific lignin is detected in RECs

and the protective layer of REC is not formed. NEV is an

ADP-ribosylation factor-GTPase-activating protein

(ARF-GAP) that localizes at the trans-Golgi network

and endosomes, and mutation in the gene influences

membrane trafficking and inhibits floral organ abscission

[14]. Transcriptomic analysis and measurement of the

force needed to remove petals suggest that the underlying

mechanisms of the abscission deficiency in nev are distinct

from those of ida and hae hsl2 mutants [21,22]. Interestingly,

AZ cells of nev are ectopically enlarged, suggesting that cell

wall loosening is not a factor that inhibits organ separation.

Extensive cell expansion is observed in plants overexpres-

sing IDA, wherein organ abscission is accelerated [23].

Disturbed cell-type-specificity in nev might be the answer

to the puzzled phenotype of nev. Overaccumulation of

H2O2 at the RECs in nev may accelerate cell wall loosening

and induction of defense-related gene expression, while

inhibiting organ separation by ectopic lignin in RECs.
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Different types of ROS play distinctive roles. Particularly,

transition from proliferation to differentiation is controlled by

balancing superoxide and H2O2 accumulation in both plant

andmammaliansystems[24,25]. In roots, theconsumptionof

H2O2 by peroxidases,  regulated by the transcription factor

UPBEAT1, has been suggested to be important in main-

taining the balance between superoxide and H2O2 [24]. In

AZ, H2O2 concentration in SECs is strongly affected by the

inhibition of superoxide dismutase (SOD) activity [3��]
suggesting that the enzymatic conversion of superoxide into

H2O2 is another regulatory point for maintaining ROS bal-

ance. Further characterization of peroxidases and SODs

would help clarify the different roles of superoxide and

H2O2andtounderstandthemolecularmechanismsbywhich

cells maintain the specific balance between these ROS.

Spatial distribution of lignin in abscission

Lignification in and near the AZ has been noted from the

earliest study [26] and it has been suggested to play a role
www.sciencedirect.com
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in protecting the area exposed after abscission [27,28].

However, recent studies in Arabidopsis have revealed that

lignin is formed, not at the RECs, but at the SECs, the AZ

attached to the shedding organ [3��] suggesting a role of

lignin in the process of abscission. Inhibition of lignifica-

tion at SECs by drugs or genetic mutation disturbs the

spatial arrangement of the cell wall enzymes and leads to

their diffusion beyond AZ, which induces random segre-

gation of SECs, delays abscission, and increases the

vulnerability of AZ to the pathogen infection [3��]. These

results suggest that the lignified cell wall provides spatial

guidance to the cell-wall-hydrolyzing enzymes to restrict

their reaction to a specific site, which is important for

spatiotemporal regulation of abscission and subsequent

surface integrity after abscission. Lignification in SECs

was also observed in cauline leaves of Arabidopsis and

Ginkgo biloba [3��] and in the fruit of Citrus [4] suggesting

that the involvement of lignin in the process of abscission

is conserved across various plants.

The spatial patterning of lignin is orchestrated by two

antagonistic pathways, the pathway leading to and inhi-

biting lignin formation. Many efforts have been made to

understand the mechanisms of localized lignin deposition

[29]. However, our knowledge of transcription networks

that regulate SEC-specific lignin formation is still

obscure. One clue can be found in the study of the

transcription factor BREVIPEDICELLUS (BP, also
Figure 2
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known as KNAT1), which negatively regulates the for-

mation of lignin at the inflorescence stem [30]. BP/

KNAT1 has been shown to act downstream of the signal-

ing pathway mediated by IDA and HAE/HSL2 indepen-

dent of SEC-lignin formation [3��,31,32]. However, REC-

preferential expression of BP/KNAT1 leaves room for the

possibility that BP/KNAT1 regulates abscission in part by

modulating lignin metabolism [3��].

In tomato, AZ develops at the midpoint of the pedicel

where the vasculature is heavily lignified (Figure 2). AZ

development is directly linked to the suppression of

lignification at the vascular tissue surrounding AZ, ensur-

ing that AZ is a lignin-free area. Mutations in the MADS-

box transcription factors, such as MACROCALYX,

JOINTLESS, or MBP21, suppress the development of

pedicel AZ, which in turn leads to continuously lignified

vascular tissue and inhibits abscission [33,34]. Similarly,

repression of lignin is observed in rice seed AZ (Figure 2).

Seed shattering in rice is directly linked to grain yield, and

the degree of grain shattering is greatly reduced during

crop domestication. In the current rice-breeding pro-

grams, the seed-shattering habit is still a target, especially

in indica cultivars that generally display a more easy-

shattering phenotype than japonica cultivars [35]. In rice,

the AZ consists of a few layers of cells between the grain

and the pedicel, where epidermal cells and the scleren-

chyma of vascular tissues are heavily lignified [9,36]. One
Current Opinion in Plant Biology
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lignin-free layer is a predominant cellular feature of the

pedicel AZ in a shattering-type indica cultivar, ‘Kasalath’,

contrary to the continuously lignified sterile lemma and

rudimentary glume, which connect at the pedicel AZ in

the moderate-shattering ‘Dongjin’ and the non-shattering

‘Ilpum’ ( japonica cultivars) [36]. The OSH15–SH5 com-

plex regulates lignin biosynthesis in rice directly by

repressing the expression of CAD2, encoding one of the

lignin biosynthesis enzymes [5�,36]. OSH15 is preferen-

tially expressed at the AZ during spikelet development,

while downregulation of OSH15 in cv. Kasalath fills the

AZ with lignin and reduces the seed-shattering pheno-

type [5�]. These results suggest that securing a space

devoid of lignin in the AZ is critical in species in which

tissues are heavily lignified, and that a lignin-free layer is

achieved by actively repressing the production of lignin.

Specific functions of plant cells are often associated with

local lignin formation [37–39], and understanding the

regulatory mechanisms underlying the distribution of

lignin around the AZ should provide additional insights

into the roles of lignin in plants.

Cell expansion and mechanical signaling during

abscission

One of the notable features of RECs is longitudinal

expansion, though the biological relevance of this phe-

nomenon is not well understood. The longitudinal expan-

sion of RECs is prominent during abscission, but is also

noticeable before abscission [40]. Recent studies on

lateral root development provide an evidence for the

biological function of such volume changes [41��,42].
Initiation and growth of lateral roots are controlled by

mechanical communication between pericycle and endo-

dermal cells involving volume changes on both sides of

cells and auxin signaling. Initial swelling of the lateral root

founder cell acts as a mechanical stress for the overlying

endodermal cells, which in turn induces controlled vol-

ume loss of endodermal cells providing room for emer-

gence of lateral roots [41��]. These findings show the

ability of plants to use turgor and/or volume change for

cell-to-cell communications [38], which might be wide-

spread in cellular responses including abscission. Inter-

estingly, the IDA-HAE/HSL2 signaling module that

activates floral organ abscission also mediates auxin-

induced cell wall remodeling of overlying cells during

lateral root emergence [43�]. A deeper understanding on

mechanical communication in abscission would provide

more complete picture of the signaling networks of cell

separation. Further investigation is needed to address the

open questions, including whether swelling of AZ cells

causes mechanical stress, if so, how the mechanical stress

is perceived by neighboring cells, and how it acts as an

upstream regulator of IDA.

In the 19th century, mechanical pressure derived by the

expansion of AZ cells was regarded as a primary cause of

cell separation [44,45]. This theory was forgotten once the
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effects of cell wall hydrolases on abscission were demon-

strated, and it is now widely accepted that cell wall

hydrolysis is the cause of cell separation [19,20]; this

has left the cell expansion feature an ‘orphan’. Even after

the middle lamella has dissociated, the leaves remain

attached due to the vascular strands, which are believed to

be easily broken due to wind or self-weight. Although

widely believed, how easily lignified xylem can be broken

due to external factors remains unclear; moreover, it is

unlikely that the plant would rely exclusively on external

factors for the final step of separation. Previous studies

provided a different view on the same. Wiesner [46]

showed that, when all the tissues except for the xylem

of the petiole AZ were cut, the leaves did not fall off due

to wind or weight. This implies that wind and weight

cannot shed leaves without reducing the integrity of

xylem. Sexton and Redshaw [47] revealed the stretched

and ruptured spiral structure of xylem vessels on the

fracture face of AZ in Impatiens sultani leaves and sug-

gested the roles of cell expansion directed along the axis

of the petiole during abscission in the rupture of the last

remaining xylem vessels. Recently, Patharkar and Walker

[48] provided evidence supporting this hypothesis. The

authors demonstrated that water stress induced the

abscission of Arabidopsis cauline leaves, an effect which

occurred only after the plants were re-watered [48]. This

suggested that water is an essential element in the abscis-

sion process. Although the authors did not provide a direct

link between rehydration and cell expansion, it would be

a reasonable assumption that rehydration leads to the

expansion of AZ cells, which in turn promotes abscission.

If so, SECs, which are bound together by lignin, would be

the solid foundation against which the expanding RECs

could press.

Recently, it has been shown that the explosive seed

dispersal in Cardamine hirsuta relies on the hinged geom-

etry of lignin in the endocarp b cell layer [37], showing

elaborate utilization of lignin in cellular mechanics. Even

in non-explosive fruits of Arabidopsis thaliana, precise

patterning of fruit tissues is critical for seed dispersion,

with the lignin arrangement at its core [49]. Differential

mechanical properties of lignified and non-lignified tis-

sues generate tension that triggers the opening of the

fruit, and details of the molecular mechanism for this can

be found in recent reviews [50,51]. Considering the

genetic networks shared by seed abscission and fruit

dehiscence, Balanza et al. suggested that fruit dehiscence

may have evolved from the mechanisms controlling seed

abscission [52]. Further understanding on similarity and

difference between seed abscission and fruit dehiscence

could bring deeper insights to the evolutionary variation

to drive morphological and functional innovation.

Protective layer formation

RECs form the outermost cell layers after abscission,

suggesting their critical role in protecting the cell surface.
www.sciencedirect.com
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During abscission of woody plants, the protective layer

and the periderm (associated with the periderm of stem)

form underneath the separation layer [6,53]. These layers

are suberized and provide a protective barrier, which is

similar to the wound-induced periderm that is followed

by suberization and lignification [54,55]. Intriguingly, the

formation of a protective layer in floral organ AZ in

Arabidopsis differs from these periderm-associated pro-

tective layers in that the remained AZ cells after abscis-

sion are converted directly into an epidermis-like protec-

tive layer [3��]. In most eudicots and gymnosperms,

periderm arises during secondary growth and replaces

the epidermis as the frontier tissue, a phenomenon which

is also observed in Arabidopsis hypocotyls and roots

[56��,57]. However, no periderm formation has been

reported in the Arabidopsis stem, even in the stem of

six-month-old plants of the soc1 ful1 double mutant that

have undergone extensive secondary growth [56��,58]. It

is intriguing how protective layer formation would occur

in tissues where the process of periderm formation is not

inherent, such as in Arabidopsis stem. A recent study

showing cuticle formation on the newly exposed cell

surface following the abscission of floral organs in Arabi-
dopsis suggests transdifferentiation of AZ cells into the

epidermis as an alternative way to form protective layer

without periderm-associated cell division [3��]. Further

investigation of the molecular mechanisms of transdiffer-

entiation in AZ cells and the comparative analysis of

wound healing and programmed abscission would provide

a broader insight into protection mechanisms in plants.

Conclusions
Abscission is an important element in the strategy that

enables a plant to adapt to the environment in a way that

continuously creates new organs. Recent studies have

shown that precise and complex signaling processes

and remodeling of cellular activities and architectures

are involved in this process, suggesting AZ to be an

attractive model system to study cellular dynamics and

cell wall remodeling. Abscission is directly linked with

crop yield and has been an important trait in plant

biotechnology in various crops including rice, tomato,

legume, cassava, Citrus, and sugarcane [4,5�,59–63]. A

multidisciplinary study using AZ as a model system would

contribute to understanding the basic principles of plant

cells, which can be applied to various fields of application.
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