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Interferon (IFN)-induced signalling pathways have essential
functions in innate immune responses. In response to type I
IFNs, filamin B tethers RAC1 and a Jun N-terminal kinase (JNK)-
specific mitogen-activated protein kinase (MAPK) module—
MEKK1, MKK4 and JNK—and thereby promotes the activation
of JNK and JNK-mediated apoptosis. Here, we show that type I
IFNs induce the conjugation of filamin B by interferon-stimulated
gene 15 (ISG15). ISGylation of filamin B led to the release of
RAC1, MEKK1 and MKK4 from the scaffold protein and thus to
the prevention of sequential activation of the JNK cascade. By
contrast, blockade of filamin B ISGylation by substitution of
Lys 2467 with arginine or by knockdown of ubiquitin-activating
enzyme E1-like (UBEL1) prevented the release of the signalling
molecules from filamin B, resulting in persistent promotion of
JNK activation and JNK-mediated apoptosis. These results
indicate that filamin B ISGylation acts as a negative feedback
regulatory gate for the desensitization of type I IFN-induced
JNK signalling.
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INTRODUCTION
Interferons (IFNs) are cytokines that regulate cell proliferation and
differentiation, and activate effector cells of the immune system
(Platanias, 2005). The first signalling pathway shown to be
activated by IFNs is the JAK–STAT pathway, but it has become
evident that other signalling cascades are required for the
generation of pleiotropic responses to IFNs. These include the

p38 signalling cascade (Katsoulidis et al, 2005), pathways
involving protein kinase C (PKC) isoforms (Uddin et al, 2002) or
CRK proteins (Platanias, 2005), and the phosphoinositide-3 kinase
(PI(3)K) pathway (Platanias, 2005; van Boxel-Dezaire et al, 2006).
Recently, we have shown that type I IFNs activate a Jun
N-terminal kinase (JNK)-specific signalling cascade—RAC1-
MEKK1-MKK4-JNK—and that filamin B facilitates type I IFN
signalling by acting as a scaffold that tethers RAC1 and the JNK
cascade members (Jeon et al, 2008).

Filamins are actin-binding proteins that comprise a family of
three members: filamin A, B and C (Stossel et al, 2001; van der
Flier & Sonnenberg, 2001). These filamin isoforms have a crucial
function in crosslinking cortical actin filaments into a dynamic,
three-dimensional structure. Filamins also interact with more than
30 cellular proteins of functional diversity (Stossel et al, 2001),
suggesting that filamins function as molecular scaffolds by
connecting and coordinating various cellular processes.

The interferon-stimulated gene 15 (ISG15) is the first reported
ubiquitin-like protein (Haas et al, 1987) and its expression and
conjugation to proteins are induced by type I IFNs (Der et al,
1998). The ubiquitin-activating enzyme E1-like (UBE1L) is an E1
ISG15-activating enzyme (Yuan & Krug, 2001); ubiquitin E2
enzymes, ubiquitin-conjugating enzyme in human (UBCH)6 and
UBCH8, also function as ISG15-conjugating enzymes (Kim et al,
2004; Zhao et al, 2004); ubiquitin E3 ligases, HECT domain and
RLD5 (HERC5) and estrogen-responsive finger protein (EFP), also
act as ISG15 E3 ligases (Wong et al, 2006; Zou & Zhang, 2006);
and ubiquitin-specific processing protease 43 (UBP43) acts as a
deISGylating enzyme (Malakhov et al, 2002). Appropriately, all of
the enzymes identified in the ISGylation pathway are induced in a
coordinated manner by type I IFNs.

At least 200 putative ISG15 target proteins have been identified
so far (Zhao et al, 2005). Many of them have crucial functions in
the type I IFN response, and include JAK1, STAT1, RIG-I and the
antiviral effector proteins MxA, PKR and RNase L (Zhao et al,
2005; Arimoto et al, 2008; Kim et al, 2008). ISG15 has been
reported to prevent virus-mediated degradation of interferon
regulatory factor 3 (IRF3), thereby increasing the induction of
IFNb expression (Lu et al, 2006). Other reports support a role for
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ISG15 in mediating resistance to the Ebola virus through
ISGylation of NEDD4 (Malakhova & Zhang, 2008; Okumura
et al, 2008); however, it remains unknown how ISGylation
of target proteins affects their cellular function in the control of
IFN-mediated signalling pathway. Here, we show that filamin B is
modified by ISG15 in response to type I IFNs and that this
modification blocks its scaffold function, leading to the abrogation
of the IFN-induced JNK signalling pathway. These results establish
that ISGylation of filamin B acts as a negative feedback regulatory
gate for the desensitization of type I IFN-induced JNK signalling.

RESULTS AND DISCUSSION
Filamin B is a target for ISGylation
Type I IFNs induce the accumulation of ISG15 and its conjugating
enzyme system. In addition, filamin B has been identified as a
putative target for ISGylation (Zhao et al, 2005). To determine
whether filamin B could indeed be modified by ISG15, A549 cells
were cultured with or without IFNb. Immunoprecipitation analysis
revealed that endogenous filamin B—but not filamin A—was
ISGylated only when cells were treated with IFNb or IFNa (Fig 1A;
data not shown). Then, we examined whether overexpressed
filamin B could also be ISGylated. The carboxy-terminal region
from hinge-1 to repeat 24 (H1–R24; see Fig 2A) was expressed
with ISG15 (Flag–ISG15gg) or its mutant form having the
C-terminal Ala–Ala in place of Gly–Gly (Flag–ISG15aa). Hence-
forth, the C-terminal H1–R24 region of filamin B is referred to as
c-filamin B. Expression of ISG15gg, but not ISG15aa, resulted in
c-filamin B ISGylation (Fig 1B), indicating that the C-terminal
glycine is required for filamin B ISGylation. In addition,
coexpression of UBP43 led to deISGylation of c-filamin B
(Fig 1C). Taken together, these results indicate that filamin B is
an ISGylation target.

Lys 2467 of filamin B is the ISGylation site
To determine the ISGylation site, various deletions of filamin B
were expressed in HeLa cells with Flag–ISG15 (Fig 2A). The

mutants containing R22–24 were ISGylated, whereas H1–R21 and
H2–R24 were not. Neither actin-binding domain–R7 (ABD–R7)
nor R8–15 was ISGylated. These results indicate that the
ISGylation site lies within R22–23. Each of the 13 lysine residues
in the R22–23 region of HisMax-R22–24 was replaced by
arginine. These mutants were expressed in HeLa cells with
Flag–ISG15 followed by pull down with nitrilotriacetic acid
(NTA) resins. Immunoblot of the precipitates with Flag antibodies
revealed that the K2467R mutation, but not the other mutations,
blocked the appearance of a 62-kDa band (indicated by R22–24-
ISG), suggesting that Lys 2467 is the ISGylation site (Fig 2B).
Immunoblot of the same precipitates with Xpress antibodies again
showed that the K2467R mutation blocked the appearance of the
62-kDa band; however, it also blocked the appearance of an
additional 55-kDa band (indicated by a dot), which was detected
in the precipitates from cells expressing all other mutants and
wild-type R22–24. To clarify whether Lys 2467 acts as the
ISGylation site, we built the K2467R mutation into a full-length
filamin B. Fig 2C shows that the K2467R mutation prevents the
ISGylation of filamin B. Therefore, we concluded that Lys 2467 in
filamin B is the ISG15 acceptor site, although the nature of the
55-kDa protein remains unknown.

Filamin B ISGylation blocks its scaffold function
Filamin B acts as a scaffold that tethers RAC1 and a JNK-specific
mitogen-activated protein kinase (MAPK) module—MEKK1, MKK4
and JNK1—and thereby facilitates type I IFN-induced JNK activation
(Jeon et al, 2008). To determine whether ISGylation of filamin B
influences its function as a scaffold, RAC1 and the JNK cascade
members were expressed in HeLa cells with c-filamin B or its
K2467R mutant (henceforth referred to as c-K2467R). Coexpression
of ISG15 prevented the interaction of RAC1 with c-filamin B, but not
with c-K2467R (Fig 3A). In addition, ISG15aa expression showed
little or no effect on the interaction of RAC1 with c-filamin B (Fig 3B).
Similarly, the interaction of MEKK1 and MKK4 with c-filamin B, but
not with c-K2467R, was markedly reduced by coexpression of
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Fig 1 | Filamin B is a target for ISGylation. (A) A549 cells were incubated for 48 h with or without 1,000 U/ml of IFNb. Cell lysates were

immunoprecipitated (IP) with filamin B or filamin A antibodies, followed by immunoblot with ISG15 antibodies. They were also probed directly with

ISG15 antibodies. (B) HisMax (HM)-c-filamin B were expressed with Flag–ISG15gg or Flag–ISG15aa. E1 and E2 were also expressed by co-transfection of

cells with pcDNA-UBE1L and pcDNA-Myc–UBCH8, respectively. Cell lysates were immunoprecipitated with Flag antibodies, followed by immunoblot

with Xpress antibodies. Cell lysates were also subjected to NTA pull-down (PD: NTA) under denaturing conditions followed by immunoblot with Xpress

or Flag antibodies. (C) HM–c-filamin B, Flag–ISG15 and UBP43 were expressed with E1 and E2 as indicated. Cell lysates were then subjected to

NTA pull-down as in (B). c-Filamin B, the carboxy-terminal H1–R24 region of filamin B; IFN, interferon; ISG, interferon-stimulated gene; NTA, nitrilo-

triacetic acid; UBC, ubiquitin-conjugating enzyme; UBE1L, ubiquitin-activating enzyme E1-like; UBP43, ubiquitin-specific processing protease 43.
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ISG15 (Fig 3D,E). By contrast, the interaction of c-filamin B with
JNK1 was not affected regardless of ISG15 coexpression (Fig 3C).
These results indicate that ISGylation of filamin B prevents its ability
to interact with the upstream activators of the JNK cascade.

To confirm whether type I IFN-induced filamin B ISGylation
blocks the interaction between filamin B and JNK cascade members,
M2 cells, having a negligible amount of filamin B (Jeon et al, 2008),
were complemented with HisMax-tagged full-length filamin B or
K2467R followed by IFNa treatment. The interaction of filamin B
with endogenous RAC1, MEKK1 and MKK4 increased until about
12 h after IFNa treatment and gradually decreased thereafter,
concomitant with an increase in the level of ISGylated filamin B
(Fig 3F). However, K2467R persistently interacted with the JNK
cascade members even when ISGylated cellular proteins reached a
maximal level. To confirm whether ISGylation of filamin B is
responsible for the prevention of its interaction with the JNK
activators, an UBE1L-specific short hairpin RNA (shUBE1L) was
transfected with M2 cells. shUBE1L, but not a control vector
(shControl), abolished the negative effect of filamin B ISGylation on
IFNa-induced interaction of filamin B with RAC1, MEKK1 and
MKK4 (Fig 3G). These results indicate that the ISGylation of filamin
B abrogates its scaffold function.

Filamin B ISGylation inhibits IFNa-induced JNK signalling
As ISGylation abrogates the scaffold function of filamin B, we
examined its effect on type I IFN-induced JNK activation.
Coexpression of ISG15 led to a marked decrease in the activation
of JNK in M2 cells complemented with c-filamin B, but not in
c-K2467R-complemented cells (Fig 4A), indicating that ISGylation

of filamin B abrogates its ability to promote type I IFN-induced
JNK activation. In addition, ISG15 expression strongly inhibited
the ability of c-filamin B, but not of c-K2467R, in the promotion of
IFNa-induced RAC1 activation (Fig 4B). These results indicate that
ISGylation of filamin B blocks its ability to promote IFNa-induced
RAC1 activation. Next, we examined the effect of c-filamin B
ISGylation on sequential activation of the JNK cascade. MEKK1-
mediated phosphorylation of MKK4 was enhanced by c-filamin B
or c-K2467R (Fig 4C); however, coexpression of ISG15 blocked
the promotion of MKK4 activation by c-filamin B, but not by
c-K2467R. Similarly, MKK4-mediated activation of JNK1 was
increased by c-filamin B or c-K2467R, and coexpression of
ISG15 abolished the stimulatory effect of c-filamin B, but not of
c-K2467R (Fig 4D). In addition, c-filamin B or c-K2467R could
enhance MEKK1-mediated activation of JNK1, and the stimulatory
effect of c-filamin B, but not of c-K2467R, was prevented by
ISG15 coexpression (Fig 4E). Taken together, these results indicate
that ISGylation of filamin B prevents its ability to promote the
sequential activation of the JNK cascade—MEKK1-MKK4-
JNK1—by blocking its scaffold function.

As filamin B accelerates IFNa-induced apoptosis through the
activation of JNK (Jeon et al, 2008), we examined the effect of
filamin B ISGylation on JNK-mediated apoptosis. Coexpression of
ISG15 led to a decrease in the levels of TRAIL-R1 (tumour necrosis
factor-related apoptosis-inducing ligand) and in the cleavage of
PARP (poly (ADP-ribose) polymerase) in M2 cells complemented
with c-filamin B, but not in c-K2467R-complemented cells
(Fig 4F), indicating that ISGylation of filamin B blocks its ability
to promote IFNa-induced apoptosis. To confirm this finding, M2
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cells were subjected to TdT-mediated dUTP nick-end labelling
(TUNEL) staining. In the presence of IFNa, unlike in its absence, the
number of TUNEL-positive cells was increased on complement-
ation of either c-filamin B or c-K2467R (Fig 4G). Coexpression of
ISG15 caused a decrease in the number of TUNEL-stained cells on
complementation with c-filamin B but not with
c-K2467R, again indicating that ISGylation of filamin B blocks
its ability to promote IFNa-induced apoptosis. The images of
TUNEL-stained cells are shown in supplementary Fig S1 online.
These results indicate that ISGylation of filamin B negatively
regulates the IFNa-induced JNK signalling.

An important question is how ISGylation of a small fraction
of filamin B could inhibit its ability to promote the type I IFN-induced
JNK pathway. However, if the small fraction of ISGylated filamin B is
localized to a functionally unique subcellular site, the inhibitory
mechanism could operate efficiently. Filamin B sequesters RAC1 and
JNK cascade members in membrane ruffles for facilitating type I
IFN signalling (Jeon et al, 2008); therefore, we examined whether
filamin B could also recruit UBCH8, an E2 for ISG15, to membrane
ruffles for facilitating the ISGylation of filamin B. In HeLa cells,
UBCH8 was present throughout the cytoplasm and the nucleus;
however, on filamin B coexpression a significant portion of UBCH8
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was recruited to membrane ruffles where filamin B is also
concentrated with actin (Fig 5A). These results suggest that filamin
B ISGylation occurs in membrane ruffles, which should result in the
prevention of filamin B scaffold function.

Fig 5B shows a model for the regulatory role of filamin B
ISGylation in the type I IFN-induced JNK signalling pathway.
Binding of IFNa/b to the type I IFN receptor (IFNAR) induces a
successive activation of the RAC1- and JNK-specific cascade
through phospho-relay reactions, resulting in JNK activation and
thus in JNK-mediated apoptosis. On the accumulation of ISG15
and its conjugation system as a late response to type I IFNs,
ISGylation of filamin B proceeds and blocks its role as a scaffold in
tethering RAC1 and JNK cascade members, thus desensitizing
type I IFN-induced JNK signalling.

Apoptosis acts as a crucial mechanism for the killing of host
cells on viral infection. IFNs promote not only apoptosis but also

cell survival against various proapoptotic stimuli such as viral
infection. Thus, the antiviral action induced by IFNs could be due
to the protection of uninfected cells against virus-induced
apoptosis, as well as to the direct killing of infected cells. For
example, IFNs promote the survival of activated T cells (Marrack
et al, 1999), protect CD4þ cells from human immunodeficiency
virus (HIV)-induced cell death (Cremer et al, 1999) and protect
lymphoblastoid cells from cell death induced by viral infection
(Einhorn & Grander, 1996). In addition, the IFNb transduction of
peripheral blood lymphocytes from uninfected or HIV-infected
donors has been shown to inhibit viral replication and increase the
survival of CD4þ cells (Vieillard et al, 1997). In this respect, we
suggest that the control of JNK-mediated apoptosis by ISGylation
of filamin B in response to type I IFNs could be a crucial
mechanism for the survival of uninfected bystander cells and thus
for antiviral action.
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termination of the early response. GEF indicates a putative guanine nucleotide exchange factor that links type I IFN signal to RAC1. HM, HisMax;
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METHODS
RAC1 activation assay. RAC1 activation was assayed as des-
cribed previously (Benard et al, 1999). Briefly, the GTPase-binding
domain of human PAK1 (p21-activated kinase 1) was expressed in
Escherichia coli as a glutathione S-transferase (GST) fusion.
Cells were serum-starved for 3 h, treated with 10,000 U/ml of IFNa
for 0.5 h and lysed. Cell lysates were incubated for 1 h with 5mg of
GST–PBD, followed by a pull-down with glutathione-Sepharose.
Precipitates were subjected to immunoblot with RAC1 antibodies.
Immunoprecipitation and pull-down analysis. For immunopreci-
pitation, cells were lysed in 50 mM Tris–HCl (pH 8), 150 mM NaCl,
1% Triton X-100 or 0.5% NP-40, 1 mM PMSF and 1� protease
inhibitor cocktail (Roche, Mannheim, Germany). Cell lysates were
incubated with the appropriate antibodies for 2 h at 4 1C and then
with 50ml of 50% slurry of protein A-Sepharose for 1 h. Cell lysates
prepared as above were also subjected to pull-down with NTA
resins. For pull-down analysis under denaturing conditions, cell
lysates were prepared in 0.1 M NaH2PO4/Na2HPO4 buffer (pH 7.4)
containing 8 M urea and 5 mM imidazole. After incubation with NTA
resins, precipitates were washed with the same buffer containing
5 mM imidazole followed by SDS–PAGE.
In vitro kinase assay. For assaying JNK activity, cell lysates were
incubated for 5 h with GST–cJun bound to glutathione-agarose.
Precipitates were washed twice with 20 mM Tris–HCl (pH 7.4),
150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1% Triton X-100,
2.5 mM sodium pyrophosphate, 1 mM b-glycerophosphate, 1 mM
Na3VO4, 1 mg/ml leupeptin and 1 mM PMSF. They were again
washed with buffer-A consisting of 25 mM Tris–HCl (pH 7.5),
5 mM b-glycerophosphate, 2 mM DTT, 0.1 mM Na3VO4 and
10 mM MgCl2. After washing, the precipitates were incubated in
buffer-A containing 0.2 mM ATP for 30 min at 30 1C. The samples
were resolved by SDS–PAGE, and phosphoproteins were
visualized by immunoblot with the p-cJun antibody.

For assaying MEKK1 activity, cell lysates were immunopreci-
pitated with the MEKK1 antibody. Precipitates were incubated
with 2 mg GST–MKK4 as a substrate in buffer-A containing 0.2 mM
ATP for 30 min at 30 1C. The samples were then resolved by
SDS–PAGE, and phosphoproteins were visualized by immunoblot
with the p-MKK4 antibody.

For other methods, see the supplementary information online.
Supplementary information is available at EMBO reports online
(http://www.emboreports.org)
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