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ABSTRACT

BRCA1, a tumor suppressor gene, is implicated
in the repression and activation of transcription
via interactions with a diverse range of proteins.
The mechanisms regulating the action of BRCA1 are
not fully understood. Here, we use the promoters
of Gadd45a, p27KIP1 and p21WAF1/CIP1 to demon-
strate that SUMO1 represses transactivation
potential of BRCA1 by causing BRCA1 to be
released from the promoters and augmenting
histone deacetylation via recruitment of histone
deacetylase (HDAC) activity. Consistently, silencing
of SUMO1 led to recruitment of BRCA1 and
release of HDAC1at the BRCA1 target promoters,
and subsequent transcriptional activation of the
BRCA1 target genes. Furthermore, a sumoylation-
incompetent mutant missing the sumoylation
donor site suppressed BRCA1-induced activation
of transcription, whereas E2 UBC9 or the dominant-
negative mutant UBC9 had no effect, implying
that repression of BRCA1-mediated activation
of transcription by SUMO1 is independent of
sumoylation. Repression of BRCA1-mediated acti-
vation of transcription by SUMO1 was reversed
by DNA damage by inducing the release of SUMO1
from the Gadd45a promoter and the recruitment
of BRCA1, along with increased histone acetylation,
to enhance activation of transcription. Together,
our data provide evidence that SUMO1 plays a
role in the activation-repression switch of BRCA1-
mediated transcription via modulation of promoter
occupancy.

INTRODUCTION

Functional loss of BRCA1 causes defective transcription-
coupled or recombination-mediated DNA repair, deregu-
lated proliferation and predisposition to familial breast
cancers (1–2), suggesting a role of BRCA1 in tumor

suppression via a diversity of functions including tran-
scription, DNA repair and cell cycle. Biochemical studies
on proteins that interact with BRCA1 also provide
evidence for the various roles of BRCA1 (2,3). BRCA1
interacts with transcription and chromatin-remodeling
proteins, including CtIP/CtBP, RbAp46/48, RNA poly-
merase II, histone deacetylases (HDACs), histone acetyl
transferases (HATs), c-myc, JunB, p53, Rb, estrogen
receptor, androgen receptor and ZBRK1, suggesting that
BRCA1 is involved in transcription and modulation of
chromatic structure (2–7). The interaction of BRCA1 with
a diversity of transcriptional regulators is consistent
with the observed physiological actions of BRCA1 and
supports the function of BRCA1 as a tumor suppressor
via regulation of transcriptional activity (2,3).
BRCA1 forms both transcriptional activator- and

repressor-complexes with a variety of proteins that
regulate transcription, and activates or suppresses the
transcription of genes involved in the cell cycle, control
of growth and response to DNA damage (6,8–12). The
interaction of BRCA1 with HDAC1 and 2 (13), RNA
helicase (14), CBP and p300 (5,15), and the BRG1 subunit
of the SWI/SNF complex (16,17), implies a critical role
for BRCA1 in chromatin remodeling. It has been shown
that the transactivation potential of BRCA1 is enhanced
by the binding of CBP and p300 in a phosphorylation-
independent manner (5). Together with RNA helicase
A, BRCA1 is a component of the SWI/SNF complex, a
large ATP-dependent chromatin remodeling complex,
aiding the access of transcriptional machinery and
transcription-coupled DNA repair proteins to DNA
(17). The interaction of BRCA1 with HDAC1 and 2
mediates repression of transcription via the induction of
histone deacetylation (4,6,18). In summary, results from
these studies provide support for the involvement of
BRCA1 in a variety of processes including transcription,
DNA repair and recombination by control of chromatin
remodeling.
The SUMO pathway is known to mediate repression

of transcription by chromatin remodeling (19,20). Many
transcription factors, including HDAC1 (21), p300/CBP
(22), CtBP (23), STAT-1 (24) and BKLF (25), are subject
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to SUMO-mediated repression of transcription that is
accompanied by histone deacetylation. Interestingly,
histone 4 (H4) is sumoylated and leads to gene silencing
through recruitment of the HDAC complex (19).
Growing evidence highlights the widespread role of
SUMO in repression of transcription.
In the present study, we have identified and character-

ized SUMO1 as a negative regulator of BRCA1-mediated
activation of transcription. We find that SUMO1 induces
the recruitment of HDAC activity to the BRCA1-reg-
ulated promoters of Gadd45a, p27KIP1 and p21WAF1/CIP1

genes, leading to reduced histone acetylation and sub-
sequent repression of transcription. Furthermore,
SUMO1 appears to suppress BRCA1-mediated activation
of transcription by releasing BRCA1 and recruiting
HDAC1, in a sumoylation-independent manner. Taken
together, our findings suggest that SUMO1 modulates
transcription by repressing BRCA1-mediated activation
of transcription by chromatin remodeling involving
deacetylation.

MATERIALS AND METHODS

Plasmid construction

To generate baits using BRCA1, four overlapping BRCA1
truncated fragments, #1 (1–324), #2 (260–553), #3
(502–802) and #4 (758–1064) were generated from
pGex-BRCA1 vectors (26,27) and subcloned into pLexA
(Clontech). BRCA1 V122A, V412A, V412A/V415A,
I769A, V772A, I783A/V788A and V412A/I783A/V788A
were constructed from the cloned BRCA1#1 to #4-pLexA
plasmids and pcDNA-HA-BRCA1 (26,27) by using a
QuikChange Site-Directed Mutagenesis Kit (Stratagene,
La Jolla, CA). To construct the SUMO-pLexA fusion bait
vector, SUMO1 cDNA fragment was generated by RT-
PCR from RNA obtained from 293T cells. The BRCA1
C-terminal #5 (1005–1313) and #6 (1314–1863) fragments
were generated by PCR from pGex-BRCA1 vectors
(26,27) and the fragments were inserted into pB42AD
(Clontech). Recombinant histidine-tagged human
SUMO1 (His-SUMO1) protein vector was generated by
inserting the corresponding cDNA containing the entire
open reading frame into a pET28a vector (Novagen,
San Diego, CA). Mammalian expression vectors for
SUMO1 and SUMO1�GG were generated by inserting
full-length cDNA fragments, generated by PCR from
pET28a-SUMO1 using the following primers: SUMO1
(50-GGAAGATCTATGTCTGACCAGGAGGCAAA-30

and 50-TCCCCGCGGCTAAACCGTCGAGTGACCC
C-30) and SUMO1�GG (50-GGAAGATCTATGTCTG
ACCAGGAGGCAAA-30 and 50-CCGCTCGAGCTACG
TTTGTTCCTGATAAACTTCAA-30), into pDsRed
(Clontech). To generate mammalian expression vectors
for Ubc9, HDAC1/2, p300 and BARD1, cDNAs contain-
ing the entire open reading frame of each gene were
produced by RT-PCR of 293T or MCF7 mRNAs. The
fragments were inserted into a pCDNA3 vector
(Invitrogen, Carlsbad, California) hooked to the HA or
FLAG epitope. Double-stranded siRNA for BRCA1 and
SUMO1 were generated using the pSUPER vector (28).

The sequences used for siRNA are as follows: BRCA1
(50-GATCCCCTCTGTCTGGAGTTGATCAATTCAAG
AGATTGATCAACTCCAGACAGATTTTTGGAAA-30

and 50-AGT TTTTCCAAAAATCTGTCTGGAGTTG
ATCAATCTC TTGAATTGATCAACTCCAGACAGA
GGG-30), SUMO1 (50-GATCCCCTGGTGATAAATAA
GATCGA TTCAAGAGATCGATCTTATTTATCACC
ATTTTTG GAAA-30 and 50-AGCTTTTCCAAAAATG
GTGATAA ATAAGATCGATCTCTTGAATCG
ATCTTATTTATC ACCAGGG-30), and HDAC1
(50-GATCCCCTGTCA AGAGCTTTAACCTGTTCAA
GAGACAGGTTAAAG CTCTTGACATTTTTGGAA
A-30 and 50-AGCTTTT CCAAAAATGTCAAGAGCTT
TAACCTGTCTCTTG AACAGGTTAAAGCTCTTGA
CAGGG-30).

Yeast two-hybrid assay

Yeast two-hybrid assays were carried out according to the
manufacturer’s protocol (Clontech). b-Galactosidase
activity was measured in duplicate from three indepen-
dent clones. This assay was performed using pLexA
or pB42AD in the yeast strain EGY48 (Clontech).
Sequencing of the library inserts of clones interacting
with fragments #1 to #4 of BRCA1, was performed using
Software (ABI. Foster City, CA).

Pull-down analysis

The histidine-tagged recombinant SUMO1 (His-SUMO1)
and SUMO1�GG (His-SUMO1�GG) proteins were
expressed and purified using pET-SUMO1 and
SUMO1�GG in Escherichia coli BL21 (DE3) cells
(Stratagene). The expression and purification of gluta-
thione S-transferase (GST) fusion proteins and GST pull-
down assays were carried out as described previously (27).
Following incubation of approximately equal amounts
of different purified GST fusion BRCA1 fragment
proteins mixed with His-SUMO1 and His-SUMO1�GG
proteins in the presence of glutathione-Sepharose 4B
beads (Amersham Biosciences, Sweden), bound proteins
were probed with anti-SUMO1 (Zymed, Carlsbad,
California) antibody.

Cell cultures and transfection

U2OS, 293T and HeLa cells were grown in DMEM
(HyClone, Logan, UT) supplemented with 10% fetal
bovine serum (HyClone) and 1% penicillin–streptomycin
(GIBCO, Gaithersgurg, MD). Transfection was per-
formed with the Effectene transfection kit (Qiagen Inc,
Valencia, CA).

Immunoblotting and coimmunoprecipitation

Cells were suspended in lysis buffer containing 17mM Tris
pH 8.0, 50mMNaCl, 0.3%Triton X-100, 0.3%NP-40 and
a protease inhibitor cocktail tablet (Roche, Switzerland).
BRCA1, UBC9 and SUMO1 were detected with anti-
BRCA1 (Santa Cruz Biotechnology, Santa Cruz, CA),
anti-UBC9 (BD Biosciences), anti-SUMO1 (Santa Cruz
Biotechnology and Zymed), anti-FLAG (Sigma, St. Louis,
MO) and anti-LexA (Invitrogen) antibodies, respectively.
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For coimmunoprecipitation experiments, cell lysates were
subjected to immunoprecipitation and the resulting immu-
noprecipitates were analyzed by immunoblotting with the
indicated antibodies.

Reporter assay

U2OS, 293T or HeLa cells were incubated in 24-well
plates, 1 day before transfection. Transfections were
performed in quadraplicate using 1–200 ng of expression
vector for pcDNA-HA-BRCA1 (wild type or mutants,
V122A, V412A, V412A/V415A, I769A, V772A, I783A/
V788A and V412A/I783A/V788A), pEGFP-SUMO1,
pDsRed-SUMO1, pDsRed-SUMO1�GG or pcDNA3.1
(Invitrogen) as a control. Cotransfection with 20 ng of
pGadd45a-luciferase reporter (10) and 1 ng of pRL SV40
or pRL TK (Promega, Madison, WI) was performed to
control for transfection efficiency. At 1 day after transfec-
tion, cells were treated with or without g-irradiation
(4 or 8Gy) or 0.3 mM trichostatin A (TSA, Sigma), and
incubated for another 24 h before being harvested and
assayed using the Dual Luciferase Reporter Assay
(Promega). The luciferase activity was standardized
against the transfection efficiency for each sample.
Values are the mean� SEM. from 3 to 6 experiments
(�P< 0.05 compared with reporter alone).

Chromatin immunoprecipitation

Chromatin immunoprecipitation (ChIP) assays using
antisera specific to acetylated histone 4 (H4) (Upstate
Biotechnology, Lake Placid, NY), HDAC1 (Upstate
Biotechnology), HDAC2 (Upstate Biotechnology),
BRCA1 (Santa Cruz Biotechnology), SUMO1 (Santa
Cruz Biotechnology), UBC9 (BD Biosciences), BARD1
(Santa Cruz Biotechnology), RNA polymerase II (Santa
Cruz Biotechnology) and p300 (Santa Cruz Biotechnology)
were performed according to the manufacturer’s instruc-
tions (Upstate Biotechnology). The DNA representing
either 0.1%of the total chromatin sample (input) or 5–10%
of the immunoprecipitate DNA was amplified using the
following promoter-specific primers: Gadd45a (50-GCTG
GGGTCAAATTGCTGG-30 and 50-GCTCGCTCGCTC
CCCGGAC-30), p27KIP1 (50-GCTTCCCGGGAGAGGA
GCG-30 and 50-CGAGCGCGCCGCCTCCCCG-30),
p21WAF1/CIP1 (50-CCTTGCCTGCCAGAGGGG-30 and
50-CAGCTGCTCACACCTCAG-30), ErbB2 (50-CCCGG
ACTCCGGGGGAGG-30 and 50-CCCGGGGGGCTCC
CCTGG-30), b-actin (50-GAGGGGAGAGGGGGTAA
AA-30 and 50-AGCCATAAAAGGCAACTTTCG-30),
and GAPDH (50-TACTAGCGGTTTTACGGGCG-30

and 50-TCGAACAGGAGCAGAGAGCGA-30). The
PCR conditions consisted of 958C for 2min, followed by
30–35 cycles of 958C for 30 sec, 588C for 30 s and 728C for
30–60 s.

DNA binding assays

Binding reactions were performed with 300 mg of nuclear
extract in a binding buffer composed of 12% glycerol,
12mM Hepes (pH 7.9), 4mM Tris (pH 7.9), 150mM KCl,
1mM EDTA, 1mM dithiothreitol and 10 mg of poly(dI-
dC) (Amersham Biosciences). Probes were prepared by

annealing of oligonucleotide containing biotin on the
50-nucleotide of the sense strand (50-GCAGGCTGATT
TGCATAGCCCAATGGCCAAGCTGCATGCAAATG
AGGCGGA, �107 to �57 of the human GADD45a
promoter) to the respective complementary oligonucleo-
tide. The binding reaction and electrophoresis were
performed at room temperature. BRCA1 protein bound
to the biotin-labeled Gadd45a promoter oligonucleotides
was pulled down with streptavidin–agarose beads (Sigma)
and detected as described previously (29).

RNA isolation and RT-PCR

Total RNA was isolated from cultured cells using TRIzol
reagent (Life Technologies, Inc, Gaithersburg, MD)
according to the manufacturer’s instructions. RT-PCR
was carried out using 2–3 mg of total RNA from cells
overexpressing or silencing SUMO1, BRCA1 and/or
HDAC1. The primer sequences for glyceraldehydes-6-
phosphate dehydrogenase (GAPDH; used as an invariant
housekeeping gene internal control), Gadd45a, p27KIP1,
p21WAF1/CIP1, b actin, ErbB2 and Cyclin D1 genes are as
follows: GAPDH (50-GTCAACGGATTTGGTCTGTA
TT-30, 50-AGTCTTCTGGGTGGCAGTGAT-30),
Gadd45a (50-TG ACTTTGGAGGAATTCTCGGC-30,
50-ATGAATGTG GATTCGTCACCAGCACGCAGT-
30), p27KIP1 (50-CCT CTTCGGCCCGGTGGAC-30,
50-TCTGCTCCACAGA ACCGGC-30), p21WAF1/CIP1

(50-CCTCCTCGGCCCGG TGGAC-30, 50-CCGTTTTC
GACCCTGAGAG-30), b-actin (50-TGGATTCCTGTGG
CATTCATGAAAC-30 and 50-TAAAACGCAGCTCAG
TTACAGTCCG-30), ErbB2 (50-TGGCTGCAAGAAGA
TCTTTG-30, 50-TGC AGTTGACACACTGGGTG-30)
and CyclinD1 (50-CCT CTTGTGCCACAGATG-30,
50-GATGTCCACGTCCC GCAC-30). RT-PCR was per-
formed as follows: annealing at 558C with 20–28 cycles for
detected genes.

Real-time PCR

All reactions were performed in triplicate using SYBR
Green PCR Master Mix kit (ABI) and an ABI PRISM
7000 Sequence Detector (ABI). Primers were used as
described in RT-PCR and ChIP. The PCR levels were
determined by normalization to that of GAPDH control
for quantification of mRNA transcripts for RT-PCR or
that of input DNA for quantitative ChIP assay. Quantities
of immunoprecipitated DNA or input DNA were
determined based on a standard curve.

RESULTS

Interaction of BRCA1 with SUMO1

SUMO1 was identified as a BRCA1-interacting protein by
using four overlapping BRCA1 truncated fragments from
1 to 1064, which did not include the transactivation
domains at the C-terminus, as baits in a yeast two-hybrid
system (Figure 1A and B). The N-terminal (1–324) and
central (758–1064) BRCA1 fragments interacted
more strongly than the other two fragments (260–553
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and 502–802) (Figure 1B). Next, we examined whether
SUMO1 interacted with BRCA1 transactivation domains
(1005–1313 and 1314–1863) by using SUMO1 as the bait
(Figure 1B). Unlike the fragments from 1–1064, the
transactivation domains (1005–1863) did not associate
with SUMO1 (Figure 1B).
To determine whether BRCA1 interacted directly with

SUMO1, six GST-fusion BRCA1 protein fragments

spanning the entire BRCA1 open reading frame
(Figure 1A) were immobilized on GST-sepharose
beads and incubated with recombinant His-SUMO1
proteins. Beads bound to His-SUMO1 protein were
recovered from each GST-BRCA1 fusion protein and
detected by immunoblotting after electrophoresis. His-
SUMO1 bound strongly to the GST-BRCA1 fusion
proteins containing all four N-terminal and internal
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Figure 1. BRCA1 associates with SUMO1 in vitro and in vivo. (A) Schematic representation of BRCA1 constructs. The RING domain (RING),
nuclear localization signal sequences (NLS), activation domain and two BRCT domains (BRCT) are indicated. Numbers above the BRCA1
constructs used in this study indicate the amino acid residues of the respective BRCA1 fragments. (B) Interaction of BRCA1 with SUMO1 in the
yeast two-hybrid system. Yeast cells transformed with two-hybrid plasmids were grown under induced conditions for reporter gene activation. The
streaks represent yeast cells cotransformed with either pLexA-BRCA1 (1–324, 260–553, 502–802 or 758–1064) and pB42AD-SUMO1. The ability of
the transactivation domains of BRCA1 to interact with SUMO1 was measured following cotransformation of yeast cells with pB42AD-BRCA1
(1005–1313 or 1314–1864) and pLexA-SUMO1. (C) In vitro interaction of BRCA1 with SUMO1. The six GST-BRCA1 (1–324, 260–553, 502–802,
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SUMO1 antibody (Upper). Twenty percent of the input SUMO1 proteins (input). SUMO1 did not bind to immobilized GST. An equivalent amount
of GST-BRCA1 protein was used for immobilization (Lower). (D) In vivo interaction of BRCA1 with SUMO1. Extracts of 293T cells were
immunoprecipitated with anti-BRCA1. Coimmunoprecipitated SUMO1 proteins were detected by immunoblots with anti-SUMO1 antibody.
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BRCA1 fragments (1–324, 260–553, 502–802 and
758–1064) but not to the two GST-BRCA1 fusion
proteins containing the transactivation domains at the
C-terminus (1005–1313 and 1314–1863) (Figure 1C). This
result is consistent with the yeast two-hybrid
results (Figure 1B) and reveals that BRCA1 interacts
directly with SUMO1 in vitro.

We next tested whether BRCA1 interacted with
SUMO1 in vivo. SUMO1 was coimmunoprecipitated
with the anti-BRCA1 antibody from 293T cell lysates,
indicating that endogenous BRCA1–SUMO1 interaction
occurs in 293T cells (Figure 1D). Taken together, the
interaction experiments show that BRCA1 interacts with
SUMO1 in mammalian cells.

Repression of BRCA1-mediated transcription by SUMO1

To understand the role of the BRCA1–SUMO1 complex,
we investigated the effect of SUMO1 on BRCA1-mediated
transcription. Thus, we evaluated the transcriptional
activity of BRCA1 by using a luciferase reporter driven
by Gadd45a promoter, which is known to be regulated by
BRCA1. BRCA1 alone induced transcription from the
Gadd45a promoter by 2.6-fold, whereas SUMO1 alone
reduced the Gadd45a transcription by �30% of the basal
level in U2OS cells (Figure 2A). Moreover, SUMO1
together with BRCA1 suppressed BRCA1-induced tran-
scriptional activity from the Gadd45a promoter to level
lower than the basal level in U2OS cells (Figure 2A). In
contrast to the results with SUMO1, UBC9 failed to have
an effect on Gadd45a transcription (Figure 2A). UBC9
did not enhance or suppress transcription from the
Gadd45a promoter in the presence or absence of
BRCA1 (Figure 2A). UBC9 did not exhibit any additive
effects in combination with SUMO1 (Figure 2A), suggest-
ing that UBC9 does not play a role in the regulation of
BRCA1-induced transcriptional activity from the
Gadd45a promoter.

Next, we examined whether SUMO1 affected BRCA1-
induced transcriptional activity in other cell lines.
Consistent with the observations in U2OS cells, SUMO1
repressed BRCA1-induced transcriptional activity in 293T
and HeLa cells to the basal level (Supplementary Figure 1),
suggesting that the repressive effect of SUMO1 on
BRCA1-mediated transcription may be general.

To further examine whether the transcriptional repres-
sion of Gadd45a gene is a bona fide SUMO1 activity and
not an artifact of reporter assay, we measured the total
levels of Gadd45a transcript by RT-PCR analysis follow-
ing ectopic expression of BRCA1 and/or SUMO1. As
expected, BRCA1 alone induced transcription of
Gadd45a gene (Figure 2B). However, SUMO1 alone
had little effect on the Gadd45a transcription (Figure 2B).
SUMO1 in the presence of exogenously expressed BRCA1
proteins repressed BRCA1-induced Gadd45a transcrip-
tion to the comparable levels observed in cells without
exogenously expressed BRCA1 and SUMO1 or in cells
with exogenously expressed SUMO1 alone (Figure 2B).
The RT-PCR results for Gadd45a mRNA (Figure 2B)
is consistent with the observations from the luciferase
reporter hooked with Gadd45a promoter (Figure 2A and

Supplementary Figure 1), suggesting that SUMO1 can
physiologically regulate the BRCA1-mediated Gadd45a
transcription.
Next, we investigated whether SUMO1 could down-

regulate transcriptions from other promoters that are not
regulated by BRCA1. BRCA1 did not alter the transcrip-
tions from ErbB2, CyclinD1 and b-actin promoters
(Figure 2B). Also, SUMO1 either alone or in the presence
of BRCA1 had little effect on transcriptions of theses
promoters (Figure 2B). These observations suggest that
the negative transcriptional effect of SUMO1 may not be
general to transcriptions from many other promoters.

Repression of BRCA1-induced transcriptional activity
by SUMO1 in a sumoylation-independent manner

Sumoylation of H4 and several transcriptional regula-
tors (30) is thought to be essential for repression of
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PCR. The amount of GAPDH transcripts is shown as a quantitative
control for Gadd45a transcripts.
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transcription. For this reason, we investigated whether
sumoylation was required for repression of BRCA1-
induced transcription by SUMO1. The transcriptional
activity from the Gadd45a promoter was monitored in the
presence of SUMO1 that was unable to sumoylate
substrates (SUMO1�GG) (Figure 3A). Inactive
SUMO1�GG had glycine residues at 99 and 100 in
the C-terminal region which were deleted. By comparison
to wild-type SUMO1, sumoylation-incompetent
SUMO1�GG exhibited a similar suppressive effect on
transcription from the Gadd45a promoter by BRCA1
(Figure 3A). We also examined whether dominant-
negative UBC9 (DN-UBC9) that is unable to conjugate
SUMO1 with substrates, had an effect on SUMO1-
mediated repression of BRCA1-induced transcriptional
activity. DN-UBC9 did not alter BRCA1-mediated
activation of Gadd45a transcription with or without
SUMO1, consistent with the effect of wild-type UBC9
(Figure 2A). Together, these results indicate that sumoy-
lation does not play a role in the repression of BRCA1-
induced transcriptional activity by SUMO1.
Next, we investigated whether SUMO1�GG interac-

ted with BRCA1 (Figure 3B and C). Purified His-
SUMO1�GG was incubated with the six GST-tagged
BRCA1 fragments immobilized on GST-agarose beads.
SUMO1�GG interacted with four BRCA1 fragments
(1–1064) (Figure 3B), in a manner consistent with the
wild-type protein (Figure 1C). Interaction of BRCA1 with
SUMO1�GG was also examined in 293T cells
(Figure 3C). EGFP–SUMO1�GG was detected in anti-
BRCA1 immunoprecipitates, showing that the BRCA1–
SUMO1�GG interaction occurs in vivo (Figure 3C).
These observations show that BRCA1 is able to interact
with sumoylation-incompetent SUMO1�GG, and this
interaction may lead to suppression of BRCA1-induced
transcriptional activity without covalent modification by
SUMO1.

BRCA1–SUMO1 interaction is required for repression
of BRCA1-mediated transcription by SUMO1

We next tested whether BRCA1–SUMO1 interaction
functionally links to SUMO1-induced repression
of BRCA1-mediated transcription. To this end, we
identified potential sumoylation-independent SUMO1
interaction motifs (SIMs, 31–34) in BRCA1 (Figure 4A).
To determine whether the putative SIMs in BRCA1
directly mediated the interaction of BRCA1 with SUMO,
we mutated the putative SIMs in four BRCA1-truncated
fragments from the SUMO1 interacting region (1–1064,
Figure 1A) and evaluated SUMO1 interacting activity
by using the mutant BRCA1 fragments as baits in the
yeast two-hybrid system (Figure 4B). Mutations of the
SIMs, 122VSII125 (V122A) from the N-terminal BRCA1
(1–324) and 769ISLV772 (I769A and V772A) from the
central BRCA1 (502–1064) displayed SUMO1 interaction
activities almost equal to that observed from BRCA1
wild type (Figure 4B). In contrast, mutations of the SIMs,
412VLDV415 (V412A) and 783ISLLEV788 (783ISLL786 and
785LLEV788, I783A/V788A) exhibited reduced SUMO1
interaction activities, compared with that of BRCA1 wild

type (Figure 4B). Taken together, these interaction
experiments suggest that the 412VLDV415, 783ISLL786

and 785LLEV788 SIMs in BRCA1 play a role in interacting
with SUMO1.

We next tested whether the BRCA1–SUMO1 interac-
tion is required for the SUMO1-induced repression
of BRCA1 transcription. To do this, we generated full-
length BRCA1 mutants containing amino acid changes
within the SIMs and evaluated BRCA1-induced activation
of Gadd45a transcription. The Gadd45a promoter-driven
transcription was upregulated by approximately 3.8-fold
(in the presence of BRCA1-containing mutations of
one SIM; V412A, V412A/V415A or I783A/V788A) to
5.8-fold (in the presence of BRCA1-containing mutations
of two SIMs; V412A/I783A/V788A) (Figure 4C), display-
ing higher transcriptional activation by comparison
to BRCA1 wild type (�2.2-fold) (Figure 4C). These
findings indicate that SIMs in BRCA1 inhibit BRCA1’s
transcriptional activity possibly by interaction of SUMO1
with SIMs. To test this, we analyzed effects of SUMO1
on transcriptional activities of BRCA1 mutants
(Figure 4D). The repression activity of SUMO1 decreased
by �30% (in the presence of one-SIM BRCA1 mutants,
V412A, V412A/V415A or I783A/V788A, from �3.8-fold
to �1.7-fold) to 50% (in the presence of two-SIM BRCA1
mutant, V412A/I783A/V788A, from �5.8-fold to
�3.9-fold) (Figure 4D and Supplementary Figure 2)
compared to that seen with BRCA1 wild type (100%,
from�2.2-fold to�0.65-fold), indicating that disruption of
SIMs in BRCA1 attenuates repressive activity of SUMO1
against BRCA1-mediated transcription. Together, these
analyses support that the SUMO1 interaction motifs in
BRCA1 participate in BRCA1–SUMO1 interaction and
sequentially exert influence of SUMO1 in the repression of
BRCA1-induced transcription.

Repression of BRCA1-induced transcriptional activity
by SUMO1 via histone deacetylation

Several recent observations indicate a functional
link between the SUMO system and HDACs in mediating
transcriptional repression via the formation of transcrip-
tionally repressive chromatin. The possibility that
HDACs may function together with SUMO1 to control
BRCA1-mediated transcription is also supported by the
association of BRCA1 with HDACs (13). Thus, we tested
the effect of an HDAC inhibitor, TSA, on Gadd45a
transcription (Figure 5A). TSA enhanced Gadd45a
transcription without regard to expression of BRCA1
and SUMO1 (Figure 5A). By comparison to BRCA1
alone (�2.5-fold) and TSA alone (�2.0-fold), TSA
together with BRCA1 synergistically increased Gadd45a
transcription by �6.1-fold (Figure 5A). Moreover, TSA
abrogated the suppressive effect of SUMO1 on BRCA1-
induced Gadd45a activation (Figure 5A), suggesting
that SUMO1 cannot repress BRCA1-induced transcrip-
tion in the presence of TSA (Figure 5A). Together, these
results show that HDAC activity contributes to the
repression of BRCA1-induced transcription by SUMO1.

To further support the role of HDAC activity in
repression of BRCA1-induced transcriptional activity
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by SUMO1, we investigated the histone acetylation status
at the Gadd45a promoter using chromatin immunopreci-
pitation (ChIP) with anti-acetyl H4. BRCA1 alone
increased the level of acetylated H4 at the Gadd45a
promoter. The addition of SUMO1 decreased the level
of acetylated H4 at the Gadd45a promoter compared with

the level in the presence of BRCA1 alone (Figure 5B). This
result suggests a close relationship between Gadd45a
transcription and histone acetylation. We next observed
that TSA treatment increased the level of acetylated
histones at the Gadd45a promoter compared with the
level in non-treated cells (Figure 5B). TSA alone led to an

A

SUMO1

SUMO1DGG

HA-BRCA1 −

− + − − + −

− − + − − +

−

−

−

−

+

−

−

−

−

−

+

−

−

−

−

−

+

−

−

+

+

−

−

−

+

−

+

−

−

+

−

−

+

−

+

−

−

−

+

+

+

−

+

−

+

+

−

−

+

FLAG-UBC9

FLAG-DN-UBC9

0.5

1.0

1.5

2.0

R
LU

2.5

Anti-HA

Anti-SUMO1

Anti-FLAG

Anti-BRCA1

Anti-SUMO1

IP: anti-BRCA1Input

B

SUMO-1

SUMO-1DGG

C

SUMO-1

GST-BRCA1

W DGG

SUMO1

W DGG W DGG W DGG W DGG
Input

BRCA1#1 BRCA1#2 BRCA1#3 BRCA1#4

Figure 3. Sumoylation-independent repression of BRCA1-induced transcription of the Gadd45a promoter by SUMO1. (A) The activity of the
Gadd45a promoter-driven reporter was analyzed in the presence of wild-type SUMO1 or its mutant derivative, SUMO1�GG, in U2OS cells
cotransfected with BRCA1. The transcription from the Gadd45a promoter was also measured in the presence of the wild type (UBC9) or dominant-
negative (DN-UBC9) UBC9. The results were analyzed as described in Figure 2. (B) In vitro association of BRCA1 with SUMO1�GG. The GST
pull-down assay was performed as described in Figure 1, except that the SUMO1�GG protein was used. (C) In vivo association of BRCA1 with
SUMO1�GG. Either wild-type SUMO1 or its mutant derivative SUMO1�GG, were transiently expressed in 293T cells. Equivalent amounts of total
cellular protein were immunoprecipitated with anti-BRCA1 (IP: anti-BRCA1) antibody. Coimmunoprecipitated SUMO1 proteins were detected by
an anti-SUMO1 immunoblot (Anti-SUMO1). The immunoprecipitated BRCA1 proteins were detected by an anti-BRCA1 antibody (Anti-BRCA1).

Nucleic Acids Research, 2008, Vol. 36, No. 1 269



induction of histone acetylation almost equal to the level
in cells expressing BRCA1 in the absence of TSA
(Figure 5B). The level of histone acetylation in cells
expressing BRCA1 in the presence of TSA was higher
than in cells expressing BRCA1 in the absence of TSA

(Figure 5B). The level of histone acetylation in cells
coexpressing BRCA1 and SUMO1 in the presence of TSA
is similar to that observed in cells expressing BRCA1
alone in the presence of TSA (Figure 5B). Thus, TSA
abrogated the reduction of histone acetylation by
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Figure 5. SUMO1-mediated repression of BRCA1-induced transcriptional activity occurs in a histone deacetylase-dependent manner. (A) TSA
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monitored by chromatin immunoprecipitation (ChIP) with anti-acetyl H4 antibody. In 293T cells, ChIP assays were performed in the presence or
absence of BRCA1 and SUMO1. In addition, changes in the acetylation status of histone were measured following treatment without or with TSA
(TSA). The endogenous Gadd45a promoter DNA that coprecipitated with the anti-acetyl H4 antibody was detected by PCR (left) or replicate
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mutant derivative SUMO1�GG. The results were analyzed as described in (B).
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SUMO1, leading to increased histone acetylation at the
Gadd45a promoter. TSA-induced histone acetylation
was in good correlation with the induction of Gadd45a
transcription following TSA treatment (Figure 5A and B).
Together, these data provide further support for the
involvement of HDACs in the repression of BRCA1-
induced transcriptional activity by SUMO1.
To further investigate the sumoylation-independent

repression of BRCA1-induced transcriptional activity
by SUMO1 (Figures 3), we analyzed the histone acetyla-
tion status of the Gadd45a promoter following expression
of SUMO1�GG (Figure 5C). Sumoylation-defective
SUMO1�GG reduced the level of histone acetylation
to almost equal level in cells expressing wild-type SUMO1
(Figure 5C), thereby providing further support for
the observation that sumoylation is not important in the
repression of BRCA1-induced transcriptional activity by
SUMO1.

SUMO1 recruits HDAC1 to and releases BRCA1
from the Gadd45a promoter

As the repressive effect of SUMO1 is TSA-sensitive and
inversely correlated with the level of histone acetylation at
the Gadd45a promoter, we investigated the influence of
SUMO1 on the recruitment of HDACs by performing
chromatin immunoprecipitation (ChIP) with anti-HDAC1
and 2 in the presence or absence of SUMO1 (Figure 6A).
Expression of SUMO1 induced the recruitment of
HDAC1 but not 2 to the Gadd45a promoter, with or
without the coexpression of BRCA1 (Figure 6A). In
contrast, BRCA1 alone caused the release of HDAC1
from the Gadd45a promoter (Figure 6A). Together, these
observations indicate that SUMO1 can recruit HDAC1
to the Gadd45a promoter, and consequently diminish
the level of histone acetylation (Figures 5B and C). ChIP
ssays were then performed to assess whether SUMO1
interferes with the association of BRCA1 with the
Gadd45a promoter. Exogenously expressed BRCA1 was
recruited to the Gadd45a promoter (Figure 6A and B).
The addition of SUMO1 led to a reduction in the level
of BRCA1 recruited to the Gadd45a promoter (Figure 6A
and B). These observations indicate that SUMO1 induces
the recruitment of HDAC1 to the Gadd45a promoter and
the release of BRCA1 from the promoter.
Next, we examined whether SUMO1 affected recruit-

ment of BARD1, which interacts with BRCA1, at the
Gadd45a promoter. As shown in Figure 5A, BRCA1
expression induced recruitment of BARD1 and SUMO1
expression induced release of BARD1 at the Gadd45a
promoter, similar to the BRCA1 result. Similarly, RNA
polymerase II, another BRCA1-interacting protein, was
recruited to the promoter following BRCA1 expression
and it was released from the promoter following SUMO1
expression (Figure 6A). However, expression of BRCA1
or/and SUMO1 had no effect on recruitment of p300 at
the promoter (Figure 6A). The level of p300 at the
promoter was not altered in the presence of BRCA1 or/
and SUMO1. These observations indicate that SUMO1
induced the release of BARD1 and RNA polymerase II
but not p300 from the Gadd45a promoter.

ChIP experiments revealed the release of HDAC1
but not HDAC2 from the Gadd45a promoter in the
absence of SUMO1 expression. In contrast, BRCA1,
BARD1 and RNA polymerase II, but not p300, were
released in the presence of SUMO1 expression. Hence,
we assessed whether expression of SUMO1 might
differentially affect protein interactions between BRCA1/
HDAC1, BRCA1/HDAC2, and BRCA1/BARD1 and
BRCA1/p300. The presence of SUMO1 expression had
little effect on BRCA1 interactions with HDAC1 or
HDAC2 (Supplementary Figure 3). Similarly, interactions
of BRCA1/BARD1 or BRCA1/p300 were not changed by
SUMO1 expression (Supplementary Figure 3).

As SUMO1�GG represses BRCA1-induced transcrip-
tion (Figure 3A), we tested whether SUMO1�GG could
also affect the association of HDAC1 or BRCA1 with the
Gadd45a promoter. ChIP analysis showed that expression
of SUMO1�GG induced the recruitment of HDAC1 to
the Gadd45a promoter (Figure 6C). SUMO1�GG also
induced the release of BRCA1 from the Gadd45a
promoter (Figure 6C). These results suggests that the
effect of SUMO1�GG on the association of HDAC1 and
BRCA1 with the Gadd45a promoter is consistent with
wild-type SUMO1 (Figure 6A and B) and further supports
the finding that SUMO1-induced repression of BRCA1-
induced transcription is not mediated by sumoylation.

Based on our results that SUMO1 induced recruitment
of HDAC1 at the promoter in the sumoylation-indepen-
dent manner, we tested whether HDAC1 is required
for SUMO1-induced repression of BRCA1’s transcrip-
tional activity. Thus, we examined the effect of HDAC1
knockdown on the transcriptional repression by SUMO1
(Figure 6D). HDAC1 knockdown had little effects on
Gadd45a transcription without regard to expression of
BRCA1 (Figure 6D). By comparison to BRCA1 alone
(�2.5-fold) and HDAC1 knockdown alone (�1.1-fold),
HDAC1 knockdown together with expression of BRCA1
barely increased Gadd45a transcription (�2.7-fold)
(Figure 6D). However, HDAC1 knockdown attenuated
the suppressive effect of SUMO1 on BRCA1-induced
Gadd45a activation by �45% (Figure 6D), suggesting
that SUMO1 is required for HDCA1 for efficient
repression of BRCA1-induced transcription.

We next analyzed status of histone acetylation at
the Gadd45a promoter when the level of endogenous
HDAC1 was reduced. In the presence of exogenous
SUMO1, depletion of HDAC1 by silencing led to less
reduction of the level of acetylated histones, compared
with the reduced level of acetylated histones without
depletion of HDAC1. However, HDAC1-depletion had
little effect on the histone acetylation without exogenous
SUMO1 proteins (Figure 6E). Thus, depletion of HDAC1
alleviated the reduction of histone acetylation by SUMO1,
leading to the increased histone acetylation at the
Gadd45a promoter. HDAC1 depletion-induced histone
acetylation (Figure 6E) was in good correlation with
the induction of Gadd45a transcription in HDAC1-
depleted cells (Figure 6D). Together, these results show
that HDAC1 activity functions in the repression of
BRCA1-induced transcription by SUMO1, via induction
of histone deacetylation at the promoter.
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Silencing of SUMO1 stimulates BRCA1-mediated
transcription and BRCA1–interaction with promoters

The reporter assay, RT-PCR and ChIP analysis of
the Gadd45a promoter were repeated in SUMO1 knock-
down cells to ascertain the physiological relevance of these
findings (Figures 1–6). We first evaluated Gadd45a

transcription by using the reporter construct driven
by the Gadd45a promoter. As expected, Gadd45a
promoter-driven transcription was upregulated by
approximately 1.6-fold (in the presence of exogenous
BRCA1 proteins) to 2-fold (in the absence of exogenous
BRCA1 proteins), when the level of endogenous
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Figure 6. The Gadd45a promoter occupancy of BRCA1, SUMO1 and HDAC1. (A) SUMO1 induced recruitment of HDAC1 and release of BRCA1 at
the Gadd45a promoter. ChIP analysis of Gadd45a promoter in 293T cells expressing BRCA1 and SUMO1 was performed using antisera specific to the
indicated proteins. (B) Real-time PCRs were performed for quantitative ChIP analysis of Gadd45a promoter with anti-HDAC1 (IP: HDAC1) and anti-
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role in SUMO1-induced repression of BRCA1-mediated transcription. Gadd45a-luciferase reporter gene activity was measured in U2OS cells transfected
with plasmids as indicated, in the absence (white) or presence of siRNA against HDAC1 (black). The values represent the mean�SEM from three
experiments (�P< 0.05). The relative induction of the Gadd45a promoter by BRCA1 to that of the reporter alone was measured in the presence or absence
of HDAC1 silencing. (Right) Relative repressive activity of SUMO1 was measured in the HDAC1 knockdown cells (black), as indicated and analyzed in
Figure 4 (D). Knockdown of HDAC1 protein and equivalent expression of BRCA1 and SUMO1 proteins were examined by immunoblotting using anti-
HDAC1, anti-HA and anti-SUMO1 antibodies, respectively. (E) Depletion of HDAC1 attenuated the SUMO1-induced reduction in histone acetylation at
the Gadd45a promoter. Quantitative ChIP analysis of the endogenous Gadd45a promoter in 293T cells was performed using real-time PCRs in the
HDAC1-depleted cells and performed as described in Figure 5.
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SUMO1 was reduced (Figure 7A). The induction of
BRCA1-mediated transcription in SUMO1-depeleted cells
(Figure 7A) was comparable to that observed in cells
expressing BRCA1 SIM-mutants (Figure 4C), indicating
that SUMO1 indeed plays a role in repression of BRCA1-
induced transcription. In contrast, Gadd45a transcription
was downregulated by �20% (in the presence of
exogenous BRCA1 and SUMO1 proteins or in the cells
without either exogenous expression) to 35% (in the
presence of exogenously expressed BRCA1 alone), when
the level of BRCA1 was reduced by deletion of
endogenous BRCA1 (Figure 7A).
We next analyzed expression of Gadd45a transcripts in

SUMO1 knockdown cells by RT-PCR (Figure 7B). In
consistent with the results obtained from the Gadd45a
reporter (Figure 7A), the level of Gadd45a mRNAs
increased in the SUMO1-depleted cells and decreased in
the BRCA1-depleted cells (Figure 7B). In the presence
of exogenous BRCA1, depletion of SUMO1 by silencing
led to further induction of Gadd45a mRNA, compared

with the induced level of Gadd45a mRNA without
exogenous BRCA1 (Figure 7B). Together with Gadd45a
promoter-driven reporter results in the SUMO1-depleted
cells, the Gadd45a mRNA expression results indicate
that SUMO1 may function as a physiological repressor
for BRCA1 transcriptional activity.

Also, depletion of endogenous SUMO1 led to induction
of the recruitment of BRCA1 to the Gadd45a promoter
and the release of HDAC1 (Figure 7C). This result further
supports the notion that SUMO1 represses BRCA1-
induced transcription from the Gadd45a promoter by
modulating protein association at the promoter. Also,
silencing of BRCA1 induced recruitment of SUMO1
and HDAC1 to the promoter (Figure 7D), suggesting that
assembly of SUMO1 and disassembly of BRCA1 at the
Gadd45a promoter is important for repression of
BRCA1-induced transcription by SUMO1.

Since BRCA1 activates p27Kip1 (35) and p21WAF1/CIP1

(36) gene transcriptions, we questioned whether BRCA1-
stimulated transcription of p27Kip1 or p21WAF1/CIP1 genes
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Figure 6. Continued.
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Figure 7. Analysis of transcription from the Gadd45a promoter following silencing of SUMO1 or BRCA1. (A) Gadd45a-luciferase reporter gene
activity was measured in U2OS cells transfected with plasmids as indicated, in the absence (white) or presence of siRNA against SUMO1 (gray) or
BRCA1 (black). The values represent the mean� SEM from three experiments (�P< 0.05). The relative induction of the Gadd45a promoter by
BRCA1 to that of the reporter alone was measured in the presence or absence of SUMO1 (gray) or BRCA1 (black) silencing. (B) Expression of
Gadd45a mRNAs was measured using real-time RT-PCR in U2OS cells transfected with plasmids as indicated, in the absence (�) or presence (+) of
siRNA against SUMO1 (siSUMO1) or BRCA1 (siBRCA1). (Inset) A representative agarose gel analysis of RT- PCR products. (C and D) BRCA1
and SUMO1 compete for the Gadd45a promoter. ChIP analyses of the endogenous Gadd45a promoter in 293T cells transfected with siRNAs
against SUMO1 (C) or BRCA1 (D) were performed with each indicated antibody. The DNA precipitated in the immunocomplexes was PCR (left) or
real-time PCR (right) amplified using primers specific to the Gadd45a promoter. Immunoblots demonstrate the reduction of the indicated target
protein level.
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might be repressed by SUMO1. First, wemeasured levels of
p27Kip1 and p21WAF1/CIP1 mRNAs following silencing
of SUMO1. Similar to the Gadd45a gene transcription,
depletion of endogenous SUMO1 induced mRNA levels
of p27Kip1 and p21WAF1/CIP1 genes (Figure 8A), sugges-
ting that SUMO1 can also repress transcription of
p27Kip1 and p21WAF1/CIP1 genes.
To see whether SUMO1 can inhibit association of

BRCA1 with p27Kip1 and p21WAF1/CIP1 promoters, we
performed the ChIP experiment in the SUMO1-depleted
cells. Silencing of SUMO1 led to induction of BRCA1
association with both p27Kip1 and p21WAF1/CIP1 promo-
ters (Figure 8B). In contrast, silencing of SUMO1 reduced
the level of HDAC1 associated with both p27Kip1 and
p21WAF1/CIP1 promoters (Figure 8B). Next, we examined
whether the level of promoter-associated SUMO1
and HDAC1 is induced in the BRCA1-depleted cells.
Silencing of BRCA1 induced association of SUMO1 and
HDAC1 with both p27Kip1 and p21WAF1/CIP1 promoters
(Figure 8B). Together, results from p27Kip1 and p21WAF1/

CIP1 experiments further support the molecular mechan-
isms by which SUMO1 can downregulate the BRCA1-
activated transcriptions via inhibition of BRCA1 associa-
tion with promoters.
Next, we tested whether SUMO1 can reduce the level

of histone acetylation at p21WAF1/CIP1 and p27Kip1

promoters. Depletion of SUMO1 by silencing led to an
induction of the level of acetylated histones at p21WAF1/

CIP1 (�2.5-fold) and p27Kip1 (�3.2-fold) promoters,
consistent with the Gadd45a promoter result (�4.3-fold)
(Figure 8C and D). In contrast, exogenously expressed
SUMO1 diminished the level of histone acetylation at
both promoters (�40� 45%) (Figure 8D), supporting that
reduction of histone acetylation at BRCA1 target
promoters plays a role in SUMO1-induced repression.
Also, both SUMO1 and SUMO1�GG inhibited associa-
tion of BRCA1 with both p21WAF1/CIP1 and p27Kip1

promoters (Figure 8D), suggesting that dissociation of
BRCA1 from both promoters contributes to repression
of BRCA1-induced transcription by SUMO1.
To see whether deletion of SUMO1 can affect expres-

sion of other genes rather than BRCA1 targets,
we analyzed mRNA transcripts of ErbB2 and Cylin D1.
In SUMO1-knockdown cells, transcription of ErbB2
and Cylin D1 genes was not altered (Figure 8E), suggest-
ing that SUMO1-induced repression may not be general.
In consistent with the transcription results, status of
histone acetylation at the ErbB2 and Cylin D1 promoters
was not changed following deletion of SUMO1
(Figure 8E), supporting that effects of SUMO1 on
transcriptional repression is not general.

SUMO1reducesbindingofBRCA1 to theGadd45apromoter

The ChIP (Figures 6–8) and coimmunoprecipitation
(Supplementary Figure 3) results suggest that regulation
of BRCA1-mediated transcription by SUMO1 seems
to be largely dependent on modulation of protein–DNA
interactions but not protein–protein interactions, for
the control of promoter occupancy. Thus, we next
examined whether SUMO1 affected the DNA–binding

activity of BRCA1 at the Gadd45a promoter, using
biotin-labeled oligonucleotides containing the BRCA1–
binding region (29). When BRCA1 alone was exogenously
expressed, the ability of BRCA1 to bind to the Gadd45a
promoter was strengthened (Figure 9A). However, when
SUMO1 and BRCA1 were expressed together, the
binding ability of BRCA1 was diminished significantly
(Figure 9A). In consistent with the results with exogen-
ously expressed BRCA1 (Figure 9A), SUMO1 led to a
dissociation of endogenous BRCA1 from DNA
(Figure 9B). Similarly, SUMO1�GG also induced
release of endogenous BRCA1 from Gadd45a promoter
DNA (Figure 9B). SUMO1 also reduced DNA–binding
activity of exogenous and endogenous BARD1 (Figure 9).
These DNA–binding results were in good agreement
with repression of Gadd45a transcription following
exogenous SUMO1 expression (Figures 2–5). These
observations indicate that SUMO1 can affect binding of
BRCA1 to the Gadd45a promoter, resulting in reduced
recruitment of BRCA1 into the Gadd45a promoter and
repression of transcription of Gadd45a gene.

SUMO1 represses BRCA1-induced transcriptional
activity stimulated by DNA damage

BRCA1-induced transcriptional activity is enhanced
by DNA damaging genotoxic treatment. We investigated
whether SUMO1 repressed BRCA1-induced transcrip-
tional activity in the presence of DNA damage. Consistent
with previous reports (10,27), the level of Gadd45a
transcription increased (�2.5- to 3.5-fold) upon g-irradia-
tion when compared to the level in non-treated cells in
the absence or presence of BRCA1 expression
(Figure 10A). Expression of BRCA1 further enhanced
Gadd45a gene expression in g-irradiated cells (�2.5-fold)
(Figure 10A), consistent with the induction of Gadd45a
transcription in the non-treated cells (�2.5-fold)
(Figures 2–5). SUMO1 markedly reduced the activation
of transcription of Gadd45a by BRCA1 in g-irradiated
cells (Figure 10A), which is consistent with the effect of
SUMO1 in non-treated cells (Figures 2–5). These observa-
tions indicate that SUMO1 can repress BRCA1-induced
transcriptional activity in the presence and absence of
DNA damage.

ChIP assays were performed to analyze the association
of BRCA1 and HDAC1 with the Gadd45a promoter in
g-irradiated cells (Figure 10B). The recruitment of BRCA1
and the release of SUMO1 were stimulated significantly
upon g-irradiation. Moreover, HDAC1 was released from
the Gadd45a promoter following g-irradiation
(Figure 10B), possibly leading to histone acetylation
and induced transcription. These findings further support
the observation that the release of SUMO1 from the
Gadd45a promoter takes place simultaneously with
the recruitment of BRCA1 to the Gadd45a promoter,
and correlates with Gadd45a expression.

DISCUSSION

In this study we describe a novel function of SUMO1
in the negative regulation of BRCA1-mediated
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transcription. We have provided several lines of experi-
mental evidence to suggest that the BRCA1-induced
transcriptional activity is inhibited by SUMO1 in a
sumoylation-independent manner (Figure 10C). First,
expression of SUMO1 led to the recruitment of HDAC1
to target promoters of BRCA1, the release of BRCA1,
and the subsequent repression of transcription of the
BRCA1 target genes, Gadd45a, p27KIP1 and p21WAF/CIP1.
Second, silencing of SUMO1 led to transcriptional
induction of the BRCA1 target genes, possibly via
recruitment of BRCA1 and release of HDAC1 at the
BRCA1 target promoters, thereby supporting a repressive

role of SUMO1 in the control of BRCA1-induced
transcription. Third, disruption of sumoylation-indepen-
dent SUMO interaction motifs (SIMs) in BRCA1
alleviated interaction of BRCA1 with SUMO1 and
consequently attenuated repressive effects of SUMO1 on
BRCA1-mediated transcription, suggesting that noncova-
lent interaction between BRCA1 and SUMO1 is required
for the SUMO1-induced repression. Fourth, UBC9, or the
dominant-negative mutant DN UBC9, had little effect on
the Gadd45a trascription. Also, dominant-negative
SUMO1�GG, that is missing the SUMO1 donor site
essential for sumoylation, maintained the capacity to
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repress BRCA1-mediated Gadd45a transcription, in a
manner similar to that observed for wild-type SUMO1.
This result provided support for the notion that sumoyla-
tion is not involved in the repression of BRCA1-induced
transcription. In summary, these results strongly suggest
that sumoylation is not closely linked to repression of
BRCA1-induced transcriptional activation.

Transcriptional repression by SUMO1 is mostly
mediated by the sumoylation of sequence-specific tran-
scriptional factors, coactivators and corepressors,
including STAT1, TCF, c-Jun, ARNT, CEBPa, c-myb,
Sp3, IRF-1, SREBP, SRF, Elk, AP1/2, androgen receptor,
progesterone receptor and Huntington (30). The majority
of evidence has established the collaborative integra-
tion of sumoylation with histone deacetylation to
achieve repression of transcription. The repression of
BRCA1-mediated transcription by SUMO1 is different
from the known mechanism of repression of transcription,
as it does not involve sumoylation. Sumoylation-indepen-
dent regulation by SUMO1 is observed in other cellular
processes including Rad51-mediated homologous recom-
bination (37) and the regulation of apoptosis mediated
by ASK (38). In addition, sumoylation-independent
regulation by other SUMO family members, SUMO2
and SUMO3, has been observed in the process
activating androgen receptor-mediated transcription (39).
Recently, a novel model is proposed that noncovalent
SUMO interaction mediated by SUMO interaction

motif (SIM) may represent a mechanism that could
control many various pathways, including formation of
PML nuclear body (34). These results, together with
the present study, support sumoylation-independent
physiological role of SUMO proteins. Despite the
importance of SIMs in repression by SUMO1, SUMO1-
mediated repressive activity was attenuated but remained
in the presence of the double SIM BRCA1 mutant.
This result suggests that there could be additional
SIMs in BRCA1 (Supplementary Figure 4). Also, we
cannot rule out the possibility that other transcrip-
tional repressor(s) can bind to both SUMO1 and
SIM-deleted BRCA1, and suppress partially BRCA1-me-
diated transcription in a BRCA1’s SIM-independent way.
Together, these findings provide evidence that the
mechanisms controlling cellular processes regulated by
SUMO1 and its paralogs, SUMO2 and 3, are diverse.
The present results suggest that HDAC1 but not 2

plays a role in the repression of BRCA1-mediated
transcriptional activity by SUMO1 (Figure 10C). First,
repression of BRCA1-mediated transcriptional activity
by SUMO1 was TSA-sensitive. Second, SUMO1 over-
expression enhanced histone deacetylation of the
BRCA1 target promoters via the recruitment of HDAC1
but not 2. Conversely, the reduction of SUMO1 by siRNA
led to a decrease in HDAC1 recruitment and histone
deacetylation, and enhanced transcriptional activity of
the BRCA1 target promoters. Third, the depletion of
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HDAC1 abrogated the repressive effects of SUMO1 on
BRCA1-mediated transcription. The results of the present
study show that HDAC recruitment and subsequent
histone deacetylation are common to the mechanism
of sumoylation-independent repression and sumoylation-
dependent transcriptional repression by SUMO1.
Although it is unclear that sumoylated transcriptional

regulatory proteins are released from, or associated
with promoters, growing evidence from investigations
into sumoylation-dependent transcriptional repression
suggest that SUMO1 is present at the repressed
promoter. In the sumoylation of transcriptional proteins,
the targeting of SUMO1 to a promoter can lead to
the recruitment of other factors that repress transcrip-
tion, including HDACs. The results of the present study
for sumoylation-independent repression of BRCA1-
induced transcriptional activity are consistent with the
promoter occupancy of SUMO1 and HDAC1.

Importantly, the presence of SUMO1 at the BRCA1
target promoters led to the release of BRCA1 from the
promoters, suggesting that SUMO1 effectively reverses the
promoter occupancy of BRCA1 in addition to HDAC1.
Thus, sumoylation-independent repression of BRCA1-
mediated transcriptional activity would affect the pro-
moter occupancy of BRCA1 but not necessarily the
associated sumoylated transcriptional proteins.
Intriguingly, SUMO1 can downregulate DNA-binding
activity of BRCA1, which subsequently results in the
release of BRCA1 from the promoters. Taken together,
those results from BRCA1-coimmunoprecipitation assays,
ChIP analysis at the BRCA1 target promoters, and
BRCA1–DNA-binding experiments point to a regulatory
mechanism for BRCA1-mediated transcription, promoter
occupancy through modulation of protein–DNA
association but not protein–protein association by
SUMO1.
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Depletion of endogenous SUMO1 caused enhanced
BRCA1 and reduced HDAC1 presence at the BRCA1
target promoters, leading to transcriptional activation,
while overexpression of SUMO1 or SUMO1�GG had
the opposite effect. Moreover, the effect of SUMO1�GG

was consistent with the effect of wild–type SUMO1 and
both UBC9 and DN-UBC9 did not compromise the
promoter occupancy and activation of transcription by
BRCA1. These results further support a sumoylation-
independent mechanism for the action of SUMO1 on
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BRCA1-mediated activation of transcription. In contrast,
depletion of endogenous BRCA1 promoted the recruit-
ment of SUMO1 and HDAC1 to the BRCA1 target
promoters, and overexpression of BRCA1 induced the
release of SUMO1 and HDAC1 from the promoters.
Collectively, these data are consistent with a model
whereby SUMO1 recruits HDAC1 to the BRCA1 target
promoter and induces the release of BRCA1, in
a sumoylation-independent manner. It appears that
recruitment of HDAC1 and the release of the transcrip-
tional activator, BRCA1, are necessary for sumoylation-
independent repression of transcription, whereas only
recruitment of HDACs is required for sumoylation-
dependent repression.
Promoter ChIP results for the BRCA1 target promoters

suggest the importance of stoichiometry between BRCA1
and SUMO1 for promoter occupancy and regulation
of transcription. This implies that BRCA1 and SUMO1
compete for promoter occupancy. This mechanism may
explain the results for the interaction between BRCA1 and
SUMO1 and their differential promoter occupancy.
Initially, we observed an interaction between BRCA1
and SUMO1 in yeast with no homologous BRCA1 gene.
However, coimmunoprecipitation experiments showed
that the interaction in mammalian cells was weak,
suggesting that the encounter between these proteins was
transient, possibly as the proteins interacted at the
promoter site.
DNA damage reversed the repression of BRCA1-

mediated activation of transcription by SUMO1.
Treatment with g-irradiation led to the recruitment
of BRCA1 to the Gadd45a promoter and the release of
both SUMO1 and HDAC1, resulting in enhanced
transcriptional activation by BRCA1. These results are
consistent with the results generated from overexpression
of BRCA1 or silencing SUMO1. Because DNA damage
enhances the level of BRCA1, it is likely that an increased
level of BRCA1 is recruited to the promoter due to DNA
damage, possibly leading to the sequential release
of SUMO1 and HDAC1. Taken together, these results
further support a mechanism involving differential
promoter occupancy and reverse transcriptional regula-
tion by SUMO1 and BRCA1.
Our finding that BRCA1 domains with transactiva-

tional potential, possibly by association with transcrip-
tional cofactors such as histone acetyl transferase p300/
CBP, did not associate with SUMO1 or UBC9, suggest
that repression of BRCA1-induced transcription by
SUMO1 is not attributed to inhibition of the association
with transcriptional coactivators in BRCA1. It appears
that SUMO1 affects promoter occupancy by modulating
the assembly and disassembly of proteins that regulate
transcription and can remodel the protein context at a
promoter by a sumoylation-independent mechanism that
leads to repression of transcription. In addition, our
data showing downregulation of BRCA1–DNA associa-
tion by SUMO1 support the potential role of SUMO1 in
modulation of protein complex at a promoter.
Mutations of the BRCA1 gene account for �5% of

breast and ovarian cancer cases, but the importance of
BRCA1 in suppression of sporadic cancers may be far

greater than what the frequency of BRCA1 mutations in
sporadic cancers suggests. The level of BRCA1 is low in
�30% of sporadic breast cancers (40). Here, we have
hypothesized that SUMO1 may serve as a negative
regulator of BRCA1’s tumor suppression functions in a
part of the remainder sporadic breast cancers that express
similar levels to normal breast tissues. To get insights into
our suggestions that the negative regulator of BRCA1 is a
bona fide SUMO1 activity and not an artifact of
enforced expression of SUMO1, we have investigated
whether SUMO1 level raises in physiological conditions in
which activity of BRCA1 in tumor suppression has been
compromised. We found that the level of SUMO1 protein
is markedly increased in some breast, lung and ovarian
cancer cell lines, compared with that in normal epithelial
cells, despite comparable levels of BRCA1 protein
(Supplementary Figure 5). However, g-irradiation, a
DNA damage signal, had little effect on induction of
SUMO1 expression, in either normal or cancer cells.
Consistently, SUMO1 mRNA level is high in cancer cells
(data not shown). These results suggest that the level of
SUMO1 might be rising in response to unknown
carcinogen-induced stress or signal and subsequently
attenuates BRCA1’s activity. In carcinogenesis processes,
SUMO1’s function in downregulation of BRCA1 activity
may have implications for development of sporadic
breast and ovarian cancers without direct mutations or
alterations in expression of BRCA1 gene.

BRCA1 exerts tumor suppression through multiple
functions. Therefore, additional studies are required to
evaluate whether and how SUMO1 antagonizes BRCA1
functions in maintaining genomic integrity via DNA
repair, cell cycle checkpoint and other processes, besides
its role in transcription. Due to rare mutations of BRCA1
in cancers, BRCA1 may be inactivated by alternative
mechanisms. Therefore, we need to address the question
whether SUMO1 can achieve functional inhibition of
BRCA1 compromising the diverse roles of BRCA1 in
tumor suppression.

In conclusion, we have examined the molecular
mechanism underlying BRCA1-mediated activation of
transcription. Although it is possible that a functional
interplay between the SUMO system and HDAC1 plays a
role in repression of transcription, the present study
describes a novel sumoylation-independent mechanism
whereby SUMO1 represses BRCA1-mediated activation
of transcription via modulation of promoter occupancy.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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