MICROBIAL ECOLOGY AND ENVIRONMENTAL MICROBIOLOGY

Diversity and Dynamics of Marine Arenicolous Fungi in Three Seasides of the Korean Peninsula

Jun Won Lee¹ · Chang Wan Seo¹ · Wonjun Lee¹ · Ji Seon Kim¹ · Ki Hyeong Park¹ · Yoonhee Cho¹ · Young Woon Lim¹

Received: 25 October 2022 / Accepted: 13 December 2022 © The Author(s), under exclusive licence to Microbiological Society of Korea 2023

Abstract

Various arenicolous fungal species have been detected from the beach sand in the coastal area. However, little has been revealed regarding their distribution and dynamics. To investigate the overall diversity of marine arenicolous fungi (MAFs) in Korea and whether the composition of MAFs is affected by ocean currents, we isolated and analyzed the fungal community from the western, southern, and eastern seasides of the Korean Peninsula. In total, 603 strains were isolated and identified as 259 species based on appropriate molecular markers for each genus (ITS, *BenA*, *CaM*, *tef1*, and *act*). The composition of MAFs showed differences among the seasides. Our results indicate that many MAFs inhabit the beach sand on the Korean Peninsula, and the composition of MAFs is also affected by ocean currents flowing along each coast.

Keywords Arenicolous fungi · Culture-dependent · Fungal composition · Fungal diversity · Beach sand

Introduction

Marine fungi are broadly defined as fungi that grow and sporulate in marine environments, build symbiotic relationships with other marine organisms. (Pang et al., 2016). Marine fungi inhabit various marine niches, including algae, corals, sponges, mangrove forests, marine snow, mudflats, and sand beaches ranging from the arctic sea to the tropical ocean (Bugni & Ireland, 2004; Hyde et al., 1998; Jones, 2000; Jones & Pang, 2012; Kohlmeyer & Kohlmeyer, 1979; Pham et al., 2021; Rämä et al., 2017; Rédou et al., 2015). They are the key components of the marine ecosystem and represent a considerable proportion of microbial diversity. Marine fungi are found in wide and diverse lineages (Hyde et al., 1998; Richards et al., 2012). Based on a broad ecological definition, they may be categorized into obligate and facultative marine fungi (Kohlmeyer & Kohlmeyer, 1979). Although obligate marine fungi grow and sporulate only in marine habitats, facultative marine fungi normally inhabit freshwater or terrestrial environments but may adapt to the marine environment. The diversity of marine fungi is underestimated compared to that of terrestrial fungi. To date, 1857 species are known to be associated with the marine environment (www.marinefungi.org, accessed on 19 August 2022), but the number is estimated to be higher than 10,000 (Jones, 2011).

The intertidal zone of beach sands harbors unique and specialized biotic assemblages (Defeo & McLachlan, 2005). Various fungal taxa were detected in this habitat, including yeast and filamentous fungi (Ghinsberg et al., 1994; Vogel et al., 2007; Yee et al., 2016). The fungi in coastal beach sands are called marine arenicolous fungi (MAFs), which are introduced from both terrestrial and marine environments (Velez et al., 2022). MAFs have various roles and contribute to nutrient cycling as decomposers and food sources (Newell & Porter, 2000; Velez et al., 2021). Many studies on MAFs have reported on the pathogens causing water contamination and human diseases (Sabino et al., 2011; Frenkel et al., 2020; Brandão et al., 2021). However, these fungi have different functions in beach sand and are promising targets for novel compounds, such as antibacterial or anticancer agents (Overy et al., 2014; Park et al., 2018). MAFs can adapt to extreme conditions, such as salt stress and high temperature (Velez et al., 2022). Their diversity may be closely related to their habitat environment such as an ocean current.

The Korean Peninsula consists of three seasides: the western, southern, and eastern seasides. All three seasides are influenced by the branches of the Kuroshio Current. The

Young Woon Lim ywlim@snu.ac.kr

¹ School of Biological Sciences and Institution of Microbiology, Seoul National University, Seoul 08826, Republic of Korea

maximum depth of the West Sea and South Sea are approximately 100 m and less than 200 m, respectively (Koh & Khim, 2014). Conversely, the depth of the East Sea is more than 3500 m (Chang et al., 2016). Due to such differences in the ocean current and environment, each seaside harbors different marine biodiversity (Baek, 2012; Park et al., 2019; Seo et al., 2018; Sohn et al., 2012). Fungal compositions are expected to be distinctive according to the ocean currents. However, the overall diversity of MAFs has not been studied intensively, except for some limited taxa (Lee et al., 2016; Park et al., 2019). The results from our previous metabarcoding study imply high diversity in the beach sand habitat (Park et al., 2019). Therefore, we aimed to (1) investigate the overall diversity of MAFs in Korean seasides and (2) evaluate whether the composition of MAFs is affected by the ocean currents.

Materials and Methods

Study Sites and Sample Collection

The West Korea Coastal Current flows in the West Sea toward the north, whereas the Jeju Warm Current affects the southern coast and turns clockwise around Jeju Island. The East Korea Warm Current occurs in the East Sea and flows along the coast toward the north (Park et al., 2017; Fig. 1). Considering the ocean currents along the seasides, we isolated fungi from six sites: Ganghwa (GH) and Muan (MA) from the western seaside, Jeju (JJ) and Suncheon (SC) from the southern seaside, and Goseong (GS) and Ulsan (US) from the eastern seaside (Fig. 1). At each site, sampling was performed in October 2016 and in January, April, and July of 2017 to reduce seasonal bias. Each beach sand sample was collected after removing the surface of the sand to avoid contamination, and the collection was repeated five times every 20 m at each site. Samples were transported to the laboratory in a 4 °C icebox and kept in a 4 °C refrigerator before isolation.

Fungal Isolation and Morphological Grouping

For fungal isolation, 5 g of sand samples were diluted tenfold using artificial seawater (ASW) containing 26.518 g/L NaCl, 2.447 g/L MgCl₂, 3.305 g/L MgSO₄, 1.141 g/L CaCl₂, 0.725 g/L KCl, 0.202 g/L NaHCO₃, and 0.083 g/L NaBr (Huang et al., 2011). For each sample, 100 μ L of the dilution was streaked onto three different culture media plates: glucose yeast extract agar (GYA; 1 g/L glucose, 0.1 g/L yeast extract, 0.5 g/L peptone, and 15 g/L agar), dichloran rose bengal chloramphenicol agar (DRBC; Difco, Becton Dickinson), and Sabouraud dextrose agar (SDA; Difco, Becton Dickinson) supplemented with ASW. The plates were

Fig. 1 Map showing the location of six sampling sites and the number of strains isolated from each site: Ganghwa (GH), Muan (MA), Jeju (JJ), Suncheon (SC), Ulsan (US), and Goseong (GS). The colored arrows indicate annual ocean currents around the Korean Peninsula (red line, warm currents; blue line, cold currents)

incubated at 25 °C for 7–14 days, and then each strain was transferred onto a potato dextrose agar (PDA; Difco, Becton Dickinson) plate with ASW. After 7–14 days, fungal strains were morphologically grouped and identified at the genus level based on their cultural characteristics on PDA (color margin, shape of the colony, and diffusible pigment production) and microscopic characteristics (shape of conidiophores and conidia). The isolated strains were stocked in 20% glycerol with ASW and stored at - 80 °C.

DNA Extraction and PCR Amplification

The genomic DNA was extracted from representative strains of each morphological group using the modified cetyltrimethylammonium bromide extraction protocol (Rogers & Bendich, 1994). The internal transcribed spacer (ITS) region and other protein-coding regions were amplified using the appropriate set of primers for each genus. The primer sets used for each genetic region were ACT-512F/ACT-783R (5'-ATGTGCAAGGCCGGT TTCGC-3'/5'-TACGAGTCCTTCTGGCCCAT-3') (Carbone & Kohn, 1999) for actin (act), Bt2a/Bt2b (5'-GGT AACCAAATCGGTGCTGCTTTC-3'/5-ACCCTCAGT GTAGTGACCCTTGGC-3') (Glass & Donaldson, 1995) for β-tubulin (BenA), CF1/CF4 (5'-GCCGACTCTTTG ACYGARGAR-3'/5'-TTTYTGCATCATRAGYTGGAC-3') (Peterson et al., 2005) for calmodulin (CaM), EF1 or EF1-728/EF2 (5'-ATGGGTAAGGARGACAAGAC-3' or 5'-CATCGAGAAGTTCGAGAAGG-3'/5'-GGARGT ACCAGTRATCATGTT-3') (Carbone & Kohn, 1999; O'Donnell et al., 1998) for translation elongation factor 1- α (*tef1*), and ITS1F/ITS4 (5'-CTTGGTCATTTAGAG GAAGTAA-3'/5'-TCCTCCGCTTATTGATATGC-3') (Gardes & Bruns, 1993; White et al., 1990) for the ITS region. PCR was performed in a C1000 Thermal Cycler (Bio-Rad) using previously described methods (Park et al., 2015a). The PCR products were purified with the ExpinTM PCR Purification Kit (GeneAll Biotechnology) according to the manufacturer's instructions. DNA sequencing was performed at Macrogen, using an ABI PRISM 3700 Genetic Analyzer (Life Technologies) with respective PCR primers.

Molecular Identification

The sequences were assembled and proofread using MEGA7 (Kumar et al., 2016). Each sequence was manually checked and revised. Thereafter, ITS sequences of all representative strains were identified to the species level using BLAST with UNITE database (https://unite. ut.ee/), according to matching reference sequences with over 97% similarity. Other protein-coding gene sequences were assigned to species using maximum likelihood (ML) phylogenetic analysis conducted via an in-house pipeline (https://github.com/Changwanseo/FunID). Sequences that showed less than 97% similarity to any reference sequences or those phylogenetically unidentified were identified up to the genus level (numbered with sp.). Taxonomic placements for each species were referenced from the UNITE database and manually confirmed. All sequences were deposited in GenBank (Table 1).

Statistical Analysis

Statistical analysis was conducted using R version 4.1.3 (R Core Team, 2022) to calculate alpha diversity indices and community dissimilarities, perform statistical tests, and visualize data. Alpha diversity indices (Chao1 richness and Shannon's diversity) were calculated using the R package vegan (Oksanen et al., 2020). The differences in alpha diversity indices between seasides were analyzed using one-way ANOVA, followed by post-hoc test adjusted with Benjamini and Hochberg method (Benjamini & Hochberg, 1995). The differences in fungal communities were visualized with Constrained Analysis of Principal Coordinates (CAP) based on Jaccard dissimilarity distance, using ordinate function implemented in the phyloseq package (Anderson & Willis, 2003; McMurdie & Holmes, 2013). To evaluate the effect of the seaside on fungal community composition, a permutational multivariate analysis of variance (PERMANOVA) was conducted using the adonis function in vegan package based on Jaccard dissimilarity index with 999 permutations.

Results

Identification of Fungal Strains

A total of 603 fungal strains were isolated from the three seasides: 379 strains from the West Sea (GH and MA), 148 strains from the South Sea (SC and JJ), and 76 strains from the East Sea (GS and US) (Table 1; Fig. 1). They were initially grouped using morphological characteristics. Certain taxonomic groups were further identified to the species level based on the phylogenetic analysis of ITS or protein-coding genes. *Cladosporium* was identified with *act. Diaporthe*, *Didymella*, *Ectophoma*, *Epicoccum*, *Penicillium*, and *Talaromyces* were identified with *BenA*. *Aspergillus* species were identified using *BenA* and *CaM*. *Fusarium* and *Trichoderma* were identified using *tef1*. The rest of the species were identified with ITS sequences.

Consequently, 259 species were identified and classified into three phyla, ten classes, 26 orders, 78 families, and 121 genera. Most isolated species were taxonomically assigned to Ascomycota (236 spp., 91%), followed by Basidiomycota (18 spp., 7%), and Mucoromycota (5 spp., 2%) (Table 1; Fig. 2A). In the Ascomycota phylum, *Penicillium* (40 spp.), *Cladosporium* (34 spp.), *Aspergillus* (11 spp.), and *Trichoderma* (10 spp.) were the most diverse genera (Fig. 2A); these were dispersed across the studied seasides (Fig. 2B). In Basidiomycota and Mucoromycota, wood decay fungi and soil fungi were primarily isolated.

Fungal Composition of Each Seaside

The largest number of species were detected from the western seaside, with 165 species, followed by the southern (98 spp.) and eastern (51 spp.) seasides (Fig. 3A). The fungal community composition also varied by seasides. Only nine species were present in all three seasides: Alternaria angustiovoidea, Cladosporium anthropophilum, C. crousii, C. pseudocladosporioides, C. rectoides, C. tenuissimum, Cladosporium sp. 1, Paraconiothyrium sp. 1, and Penicillium fructuariae-cellae. In the western seaside, Penicillium (29 spp., 17.6%) was the most diverse genus, followed by *Cladosporium* (28 spp., 17.0%), *Aspergillus* (8 spp., 4.8%), and Talaromyces (6 spp., 3.0%). In the southern seaside, 98 species were discovered, including Cladosporium (14 spp., 14.3%), Penicillium (11 spp., 11.2%), Trichoderma (4 spp., 4.1%), and *Didymella* (4 spp., 4.1%). Moreover, in the eastern seaside, 51 species were identified, including Penicillium (14 spp., 27.5%), Cladosporium (9 spp., 17.6%), and Acremonium (2 spp., 3.9%) (Figs. 2B, 3B).

Table 1 Strains with sampling sties and their GenBank accession numbers used for phylogenetic analyses in this study

Species	Strain name	Sample site	PCR region	Accession number
Ascomycota				
Acaulium album	SFC20220920-G157	Muan	ITS	OP597822
Achroiostachys levigata	SFC20220920-C024	Ganghwa	ITS	OP597823
Acremonium exuviarum	SFC20220920-G013	Muan	ITS	OP597824
Acremonium polychromum	SFC20220920-C180	Jeju	ITS	OP597825
Acremonium sp. 1	SFC20220920-B504	Ulsan	ITS	OP597826
Acremonium sp. 2	SFC20220920-G030	Suncheon	ITS	OP597827
Acremonium sp. 3	SFC20220920-G110	Goseong	ITS	OP597828
Acremonium vitellinum	SFC20220920-B095	Ganghwa	ITS	OP597829
	SFC20220920-B352	Ganghwa	ITS	OP597830
Acrocalymma sp. 1	SFC20220920-G302	Ganghwa	ITS	OP597831
Adisciso kaki	SFC20220920-C174	Suncheon	ITS	OP597833
Albifimbria verrucaria	SFC20220920-G012	Muan	ITS	OP597834
Albifimbria verrucaria	SFC20220920-G176	Muan	ITS	OP597835
Alfaria sp. 1	SFC20220920-B121	Ganghwa	ITS	OP597836
Alternaria angustiovoidea	SFC20220920-C139	Jeju	ITS	OP597837
	SFC20220920-C140	Jeju	ITS	OP597838
	SFC20220920-D024	Jeju	ITS	OP597839
	SFC20220920-D025	Jeju	ITS	OP597840
	SFC20220920-D029	Jeiu	ITS	OP597841
	SFC20220920-D030	Jeiu	ITS	OP597842
	SFC20220920-D031	Jeiu	ITS	OP597843
	SFC20220920-D053	Jeiu	ITS	OP597844
	SFC20220920-D217	Jein	ITS	OP597845
	SFC20220920-D364	Jein	ITS	OP597846
	SFC20220920-D372	Jein	ITS	OP597847
	SFC20220920-D385	Jein	ITS	OP597848
	SFC20220920-D423	Jeiu	ITS	OP597849
	SFC20220920-G091	Jeiu	ITS	OP597850
	SFC20220920-G148	Jeiu	ITS	OP597851
	SEC20220920-G195	Jeju	ITS	OP597852
	SEC20220920-G275	Jeju	ITS	OP597853
	SEC20220920-G265	Jeju	ITS	OP597854
	SEC20220920-G300	Jeju	ITS	OP597855
Alternaria subcucurbitae	SEC20190612 M11	Ganghwa	ITS	OP507856
Angustimassarina sp. 1	SEC20220020 C375	Suncheon	ITS	OP507857
Angusumussurmu sp. 1	SEC20220920-C575	Jein	ITS	OP507858
Aniaspora saranansis	SEC20220920-0005	Muan	ITS	OP507860
Apiospora sp. 1	SEC20220920-B248	Sunchoon	ITS	OP507861
Articulospora sp. 1	SEC20220920-0128	Suncheon	ITS	OP507862
Amenoillus situinotonnous	SEC20220920-C012	Conchuo	115 Ban A	OP597802
Aspergillus curinolerreus	SFC20220920-0505	Galigliwa	DenA D A	OP584170
	SFC20220920-G327	Suncheon	BenA	OP584175
Aspergulus Juavus	SFC201/0919-M04	Jeju		OP594134
Asperguius jumigatus	SFC20220920-G402	Ganghwa	BenA Ben A	OP594174
	SFC20220920-G492	Ganghwa	BenA D	OP584174
A	SFC20220920-G530	Ganghwa	вепА С М	OP5841/3
Aspergillus lentulus	SFC20190312-M06	Suncheon	CaM	OP584135
Aspergillus niveus	SFC20220920-G346	Muan	BenA	OP5841/1
Aspergillus pseudoviridinutans	SFC20220920-G251	Muan	Сам	OP584140
Aspergillus quadrilineatus	SFC20190612-M21	Ganghwa	CaM	OP584136

Species	Strain name	Sample site	PCR region	Accession number
Aspergillus terreus	SFC20220920-C355	Muan	CaM	OP584138
Aspergillus venenatus	SFC20220920-B315	Muan	CaM	OP584137
Aspergillus welwitschiae	SFC20220920-G002	Muan	CaM	OP584139
	SFC20220920-G336	Muan	BenA	OP584168
	SFC20220920-G396	Muan	BenA	OP584169
Atrocalyx krabiensis	SFC20220920-D326	Muan	ITS	OP597863
Beauveria bassiana	SFC20180817-M26	Muan	ITS	OP597864
	SFC20170919-M02	Muan	ITS	OP597865
	SFC20220920-G050	Muan	ITS	OP597866
	SFC20220920-G118	Muan	ITS	OP597867
Berkeleyomyces basicola	SFC20190612-M23	Ganghwa	ITS	OP597868
Biatriospora sp. 1	SFC20220920-B470	Suncheon	ITS	OP597869
Bimuria novae-zelandiae	SFC20220920-G008	Muan	ITS	OP597870
Bispora sp. 1	SFC20220920-C383	Suncheon	ITS	OP597871
Boeremia exigua	SFC20220920-B531	Jeju	ITS	OP597873
Cadophora luteo-olivacea	SFC20220920-G261	Ganghwa	ITS	OP597874
Caliciopsis sp. 1	SFC20220920-D392	Muan	ITS	OP597875
Chaetocapnodium placitae	SFC20220920-B139	Ganghwa	ITS	OP597878
	SFC20220920-C196	Ganghwa	ITS	OP597879
	SFC20220920-G040	Ganghwa	ITS	OP597880
Chaetomium sp. 1	SFC20220920-D382	Ganghwa	ITS	OP597881
Chrysosporium carmichaelii	SFC20220920-C380	Muan	ITS	OP597882
Cladosporium allicinum	SFC20190612-M05	Ganghwa	act	OP583970
1	SFC20220920-D070	Ganghwa	act	OP583972
	SFC20220920-D076	Ganghwa	act	OP583978
	SFC20220920-D077	Ganghwa	act	OP583987
	SFC20220920-D078	Ganghwa	act	OP583979
	SFC20220920-D093	Ganghwa	act	OP583974
	SFC20220920-D110	Ganghwa	act	OP583950
	SFC20220920-D111	Ganghwa	act	OP583980
	SFC20220920-D112	Ganghwa	act	OP583982
	SFC20220920-D113	Ganghwa	act	OP583983
	SFC20220920-D148	Ganghwa	act	OP583973
	SFC20220920-D149	Ganghwa	act	OP583981
	SFC20220920-D159	Ganghwa	act	OP583985
	SFC20220920-D160	Ganghwa	act	OP583975
	SFC20220920-D209	Ganghwa	act	OP584106
	SFC20220920-D215	Ganghwa	act	OP584005
	SFC20220920-D222	Ganghwa	act	OP583993
	SFC20220920-D226	Ganghwa	act	OP583986
	SEC20220920-D227	Ganghwa	act	OP584007
	SEC20190612-M09	Ganghwa	act	OP583994
	SEC20220920-D287	Ganghwa	act	OP583971
	SFC20220920-D297	Ganghwa	act	OP583990
	SFC20220920-D299	Ganghwa	act	OP583992
	SFC20220920-D300	Ganghwa	act	OP584006
	SFC20220920-D301	Ganghwa	act	OP583976
	SFC20220920-D338	Ganghwa	act	OP583977
	SEC20220920-D346	Ganghwa	act	OP584107
	SFC20220920-D347	Ganghwa	act	OP583999
	51 020220720 0347	Sungitwu		

Table 1 (continued) Species Strain name Sample site PCR region Accession number SFC20220920-D373 Ganghwa act OP584108 SFC20220920-D378 Ganghwa OP584109 act SFC20220920-D379 Ganghwa OP583991 act SFC20220920-D386 Ganghwa act OP583989 SFC20220920-D387 Ganghwa OP583984 act SFC20220920-D395 Ganghwa OP583988 act SFC20220920-D407 Ganghwa act OP584112 SFC20180917-M01 Ganghwa act OP584110 OP584013 Cladosporium anthropophilum SFC20181014-M01 Ganghwa act SFC20180817-M19 OP584014 Ganghwa act SFC20220920-B117 Ganghwa OP584015 act SFC20220920-B265 Ganghwa OP584022 act SFC20220920-B290 OP584037 Ganghwa act SFC20220920-B294 Ganghwa OP584114 act SFC20220920-B312 Ganghwa act OP584073 SFC20220920-B508 Ganghwa act OP584053 SFC20220920-D205 Ganghwa OP584117 act SFC20220920-D381 Ganghwa OP584038 act SFC20220920-D389 Ganghwa act OP584118 SFC20220920-D421 Ganghwa OP584101 act SFC20220920-D422 Ganghwa OP584052 act SFC20220920-G022 Ganghwa OP584033 act SFC20220920-G066 OP584026 Ganghwa act SFC20220920-G067 Ganghwa OP584020 act SFC20220920-G090 Ganghwa act OP584030 SFC20220920-G103 Ganghwa OP584027 act SFC20220920-G112 Ganghwa OP584034 act SFC20220920-G123 OP584016 Ganghwa act SFC20220920-G129 Ganghwa act OP584021 SFC20220920-G132 Ganghwa OP584025 act SFC20220920-G147 Ganghwa act OP584035 SFC20220920-G155 Ganghwa OP584017 act SFC20220920-G167 Ganghwa OP584018 act SFC20220920-G183 Ganghwa act OP584028 SFC20220920-G211 Ganghwa OP584036 act SFC20220920-G241 Ganghwa OP584029 act SFC20220920-G257 Ganghwa OP584072 act SFC20220920-G311 OP584019 Ganghwa act OP584032 SFC20220920-G319 Ganghwa act SFC20220920-G342 OP584031 Ganghwa act Cladosporium crousii SFC20220920-B076 Ganghwa OP584088 act SFC20220920-D198 Ganghwa OP584096 act SFC20220920-D200 Ganghwa OP584120 act SFC20220920-D391 Ganghwa act OP584097 SFC20220920-G209 Ganghwa OP584131 act SFC20220920-G286 Ganghwa act OP584089 SFC20220920-G291 Ganghwa OP584090 act Cladosporium devikae SFC20170718-M12 Goseong OP583956 act OP584115 SFC20220920-D207 Goseong act SFC20220920-D244 Goseong OP584103 act

Species	Strain name	Sample site	PCR region	Accession number
	SFC20220920-D245	Goseong	act	OP584104
	SFC20220920-D285	Goseong	act	OP584023
	SFC20220920-D340	Goseong	act	OP584024
	SFC20220920-D380	Goseong	act	OP584116
Cladosporium dominicanum	SFC20190312-M02	Muan	act	OP583967
Cladosporium endoviticola	SFC20220920-D254	Ganghwa	act	OP584098
Cladosporium floccosum	SFC20190612-M06	Ganghwa	act	OP583995
	SFC20220920-D349	Ganghwa	act	OP583998
	SFC20180917-M04	Ganghwa	act	OP583997
	SFC20190612-M10	Ganghwa	act	OP583996
Cladosporium halotolerans	SFC20220920-B130	Ganghwa	act	OP584121
	SFC20220920-C163	Ganghwa	act	OP583960
	SFC20220920-C164	Ganghwa	act	OP584122
Cladosporium lentulum	SFC20220920-B140	Ganghwa	act	OP583962
Cladosporium macadamiae	SFC20220920-D336	Ulsan	act	OP584095
	SFC20220920-D365	Ulsan	act	OP584094
Cladosporium pseudocladosporioides	SFC20220920-B108	Ganghwa	act	OP584093
	SFC20220920-B135	Ganghwa	act	OP584091
	SFC20170718-M11	Ganghwa	act	OP583969
	SFC20220920-D377	Ganghwa	act	OP584092
Cladosporium puris	SFC20220920-B441	Suncheon	act	OP584045
	SFC20220920-C176	Suncheon	act	OP584049
	SFC20220920-D142	Suncheon	act	OP584046
	SFC20220920-D295	Suncheon	act	OP584050
	SFC20220920-D315	Suncheon	act	OP584047
	SFC20220920-D335	Suncheon	act	OP584048
	SFC20220920-D358	Suncheon	act	OP584071
	SFC20220920-D374	Suncheon	act	OP584105
Cladosporium ramotenellum	SFC20180817-M20	Ganghwa	act	OP583954
	SFC20181014-M02	Ganghwa	act	OP584008
	SFC20190416-M09	Ganghwa	act	OP584011
	SFC20220920-D351	Ganghwa	act	OP584010
	SFC20220920-D415	Ganghwa	act	OP584009
Cladosporium rectoides	SFC20220920-B118	Ganghwa	act	OP583963
	SFC20220920-B136	Ganghwa	act	OP584084
	SFC20220920-B137	Ganghwa	act	OP584075
	SFC20171120-M05	Ganghwa	act	OP584076
	SFC20220920-B466	Ganghwa	act	OP584079
	SFC20220920-D073	Ganghwa	act	OP584081
	SFC20220920-D136	Ganghwa	act	OP584083
	SFC20220920-D266	Ganghwa	act	OP584086
	SFC20220920-D319	Ganghwa	act	OP584080
	SFC20220920-D320	Ganghwa	act	OP584074
	SFC20220920-D321	Ganghwa	act	OP584085
	SFC20220920-D404	Ganghwa	act	OP584078
	SFC20220920-G085	Ganghwa	act	OP584077
	SFC20220920-G087	Ganghwa	act	OP584087
	SFC20220920-G190	Ganghwa	act	OP584082
Cladosporium sinense	SFC20180817-M16	Ganghwa	act	OP583955
Cladosporium sp. 1	SFC20220920-B316	Muan	act	OP584039

Species	Strain name	Sample site	PCR region	Accession number
	SFC20220920-B336	Muan	act	OP584040
	SFC20220920-B518	Muan	act	OP584042
	SFC20220920-C185	Muan	act	OP583957
	SFC20220920-D271	Muan	act	OP584043
	SFC20220920-D324	Muan	act	OP584051
	SFC20220920-D375	Muan	act	OP584044
	SFC20220920-D390	Muan	act	OP584102
	SFC20220920-D403	Muan	act	OP584113
Cladosporium sp. 2	SFC20220920-B349	Muan	act	OP584068
	SFC20220920-G028	Muan	act	OP584069
	SFC20220920-G146	Muan	act	OP584070
Cladosporium sp. 3	SFC20220920-C167	Jeju	act	OP583965
Cladosporium sp. 4	SFC20190612-M07	Ganghwa	act	OP583959
Cladosporium sp. 5	SFC20220920-D363	Ganghwa	act	OP584133
Cladosporium sp. 6	SFC20190612-M20	Ganghwa	act	OP583953
Cladosporium sp. 7	SFC20220920-D039	Ganghwa	act	OP583951
	SFC20220920-D155	Ganghwa	act	OP584004
Cladosporium sp. 8	SFC20190612-M08	Muan	act	OP583952
Cladosporium sp. 9	SFC20220920-D345	Ganghwa	act	OP584111
Cladosporium sp. 10	SFC20220920-D211	Ganghwa	act	OP584132
Cladosporium sp. 11	SFC20220920-D213	Jeju	act	OP584123
	SFC20220920-D384	Jeju	act	OP584125
	SFC20220920-G272	Jeju	act	OP584124
Cladosporium sp. 12	SFC20171120-M08	Suncheon	act	OP583968
Cladosporium sp. 13	SFC20220920-B091	Ganghwa	act	OP584126
	SFC20181014-M03	Ganghwa	act	OP584127
	SFC20220920-G255	Ganghwa	act	OP584128
	SFC20220920-G365	Ganghwa	act	OP584129
Cladosporium sp. 14	SFC20180917-M02	Suncheon	act	OP583966
Cladosporium sphaerospermum	SFC20220920-G287	Suncheon	act	OP583961
Cladosporium subtilissimum	SFC20220920-D188	Ganghwa	act	OP584000
	SFC20220920-D189	Ganghwa	act	OP584001
	SFC20220920-D396	Ganghwa	act	OP584002
	SFC20220920-D406	Ganghwa	act	OP584003
Cladosporium tenuissimum	SFC20220920-B304	Muan	act	OP584119
	SFC20220920-B333	Muan	act	OP584054
	SFC20220920-B337	Muan	act	OP584055
	SFC20190514-M08	Muan	act	OP584041
	SFC20220920-C169	Muan	act	OP584060
	SFC20220920-C173	Muan	act	OP584065
	SFC20220920-C188	Muan	act	OP584067
	SFC20220920-C190	Muan	act	OP584062
	SFC20220920-C316	Muan	act	OP584063
	SFC20220920-C317	Muan	act	OP584056
	SFC20220920-D257	Muan	act	OP583958
	SFC20220920-D261	Muan	act	OP584064
	SFC20220920-D265	Muan	act	OP584057
	SFC20220920-D409	Muan	act	OP584066
	SFC20220920-G135	Muan	act	OP584061
	SFC20220920-G168	Muan	act	OP584058

Species	Strain name	Sample site	PCR region	Accession number
	SFC20220920-G337	Muan	act	OP584059
Cladosporium xanthochromaticum	SFC20180817-M01	Muan	act	OP584130
Cladosporium xylophilum	SFC20170919-M03	Jeju	act	OP583964
	SFC20220920-D327	Jeju	act	OP584099
	SFC20220920-D383	Jeju	act	OP584100
	SFC20220920-D413	Jeju	act	OP584012
Clohesyomyces sp. 1	SFC20220920-B432	Suncheon	ITS	OP597883
Clonostachys miodochialis	SFC20220920-B112	Ganghwa	ITS	OP597884
	SFC20220920-B267	Ganghwa	ITS	OP597885
	SFC20220920-B273	Ganghwa	ITS	OP597886
	SFC20220920-B538	Ganghwa	ITS	OP597887
	SFC20220920-B540	Ganghwa	ITS	OP597888
Clonostachys sp. 1	SFC20220920-G007	Muan	ITS	OP597889
Clonostachys sp. 2	SFC20220920-G131	Ganghwa	ITS	OP597890
Coniothyrium sp. 1	SFC20220920-C366	Suncheon	ITS	OP597892
Cordana sp. 1	SFC20220920-D408	Ulsan	ITS	OP597894
Corollospora gracilis	SFC20181014-M04	Goseong	ITS	OP597895
Curvularia fallax	SFC20220920-G399	Muan	ITS	OP597896
Curvularia sorghina	SFC20220920-G189	Ulsan	ITS	OP597897
Curvularia spicifera	SFC20170919-M10	Jeju	ITS	OP597898
Cytospora predappioensis	SFC20170919-M09	Jeju	ITS	OP597899
Diaporthe sp. 1	SFC20220920-G137	Ganghwa	BenA	OP589763
	SFC20220920-G210	Ganghwa	BenA	OP589764
	SFC20220920-G357	Ganghwa	BenA	OP589765
	SFC20180817-M21	Ganghwa	BenA	OP584187
Didymella sp. 2	SFC20220920-C031	Suncheon	BenA	OP584189
Didymella sp. 3	SFC20181014-M07	Jein	BenA	OP584188
Didymella sp. 4	SFC20190312-M08	Jeiu	BenA	OP584190
Didymella sp. 5	SFC20220920-B507	Jeiu	BenA	OP584191
Didymosphaeria sp. 1	SFC20171120-M06	Suncheon	ITS	OP597901
	SFC20220920-C103	Suncheon	ITS	OP597902
	SFC20220920-D051	Suncheon	ITS	OP597903
	SFC20220920-G139	Suncheon	ITS	OP597904
Didymosphaeria sp. ?	SFC20220920-G029	Muan	ITS	OP597905
Didymosphaeria sp. 2	SFC20220920-G340	Ganghwa	ITS	OP597906
Ectophoma sp 1	SFC20220920-B297	Muan	RenA	OP584177
Detephonia sp. 1	SFC20220920-B450	Muan	BenA	OP584178
Enicoccum duchesneae	SFC20190612-M01	Ieiu	BenA	OP584186
Epicoccum latusicollum	SFC20220920-C130	Jeju	BenA	OP584179
Epicoccum anusconum	SFC20220920-C131	Jeju	BenA	OP584180
	SEC20220920-C132	Jeju	BenA	OP584185
	SFC20220920-C132	Jeju	Bend	OP584184
	SFC20220920-C134	Jeju	Bend	OP584182
	SFC20220920-C135	Jeju	Bend	OP584183
	SEC20220920-C138	Jeju	BanA	OP584181
Epicoccum lavuense	SEC20220920-0130	Ganghwa	Bena	OP58/176
Epicoccum injuense	SEC20220920-D555	Muan	ITS	OP507007
Europhium sp. 1 Furcasteriomium furcatum	SEC20220920-0150	Suncheon	ITS	OP507008
r arcusteriginum jarcuum Fusarium fuitkuroi	SEC20220920-0304	Ganghwa	115 tof1	OP580767
r asariani jajiwatu Fusarian incarnatum	SEC20220920-0030	Jein	tof1	OP580760
i usui tum meanaunt	51 C20220920-C000	Juju	ieji	01 309/09

Species	Strain name	Sample site	PCR region	Accession number
	SFC20220920-G116	Jeju	tef1	OP584144
	SFC20220920-G356	Jeju	<i>tef1</i>	OP584145
Fusarium oxysporum	SFC20220920-G122	Muan	tefl	OP584141
	SFC20220920-G269	Muan	tefl	OP584143
	SFC20220920-G335	Muan	<i>tef1</i>	OP584142
Fusarium proliferatum	SFC20171120-M02	Muan	tef1	OP589768
Fusarium solani	SFC20220920-G361	Muan	tef1	OP589766
Gibellulopsis piscis	SFC20220920-B258	Muan	ITS	OP597909
	SFC20220920-B272	Muan	ITS	OP597910
	SFC20220920-B298	Muan	ITS	OP597911
	SFC20220920-C018	Muan	ITS	OP597912
	SFC20220920-G304	Muan	ITS	OP597913
Gliomastix roseogrisea	SFC20220920-B264	Muan	ITS	OP597914
Hansfordia pulvinata	SFC20220920-G156	Muan	ITS	OP597916
Humicola olivacea	SFC20220920-G006	Muan	ITS	OP597917
	SFC20220920-G245	Muan	ITS	OP597918
	SFC20220920-G312	Muan	ITS	OP597919
	SFC20220920-G334	Muan	ITS	OP597920
Humicola sardiniae	SEC20220920-B537	Goseong	ITS	OP597921
	SFC20220920-B543	Goseong	ITS	OP597922
	SFC20220920-G124	Goseong	ITS	OP597923
	SFC20220920-G411	Goseong	ITS	OP597924
Ilvonectria liriodendri	SFC20170919-M06	Ieiu	ITS	OP597925
Ilvonectria robusta	SFC20170919-M08	Jeiu	ITS	OP597926
Lanzia sp. 1	SEC20220920-B451	Suncheon	ITS	OP597928
Lectera cansici	SFC20220920-G347	Muan	ITS	OP597929
Lophiostoma sp. 1	SEC20220920-B326	Muan	ITS	OP597930
Lopmosionia sp. 1	SFC20220920-G011	Muan	ITS	OP597931
Microascus cinereus	SFC20190514-M03	Ieiu	ITS	OP597932
Microcera sp. 1	SEC20220920-B521	Jeju	ITS	OP597933
Multisentospora sp. 1	SFC20220920-G141	Muan	ITS	OP597938
Mumsepiospora sp. 1 Mvrmecridium schulzeri	SFC20220920-G326	Muan	ITS	OP597939
Nemania diffusa	SFC20190416-M14	Muan	ITS	OP597940
itemania aggusa	SEC20220920-G154	Muan	ITS	OP597941
Neocamarosporium sp. 1	SEC20220920-B245	Muan	ITS	OP597942
Neocatenulostroma sp. 2	SFC20220920-D291	Ieiu	ITS	OP597943
Neomassarina thailandica	SEC20220920-B516	Jeju	ITS	OP597944
Neosetophoma sp. 1	SEC20220920-B515	Jeju	ITS	OP597945
Neosciopnoma sp. 1	SFC20220920-C048	Jeju	ITS	OP597946
Neostagonospora sp. 1	SFC20220920-D357	Ganghwa	ITS	OP597947
Nentunomyces sp. 1	SEC20220920-D337	Muan	ITS	OP507048
Neptunomyces sp. 1	SEC20220920-B295	Muan	ITS	OP507040
	SEC20220920-C330	Muan	ITS	OP507050
Neurospora terricola	SEC20220920-8573	Goseong	ITS	OP597951
Niasslia tonuis	SEC20220920-B375	Muon	ITS	OP507052
THESSILL ICHUIS	SEC20220920-D240	Muan	ITS	OP507052
	SEC20171120 M02	Muan	ITS	OD507054
Nigrosporg sp. 1	SEC20220020 C127	Sunchoon	ITS	OP507055
Augrospora sp. 1	SEC20220920-0127	Muon	ITS	OD507054
Paraconiothyrium cp. 1	SEC20220920-0321	Sunchaan	IIS	OF 57/950
i aracomomyrium sp. 1	SITC20220920-B403	Suncheon	113	0133/33/

Species	Strain name	Sample site	PCR region	Accession number
	SFC20170718-M09	Suncheon	ITS	OP597958
	SFC20220920-D313	Suncheon	ITS	OP597959
	SFC20220920-G375	Suncheon	ITS	OP597960
Paraphaeosphaeria angularis	SFC20190416-M15	Jeju	ITS	OP597961
Paraphaeosphaeria sardoa	SFC20220920-G061	Ganghwa	ITS	OP597962
Paraphaeosphaeria sp. 1	SFC20220920-G281	Ganghwa	ITS	OP597963
Paraphoma radicina	SFC20220920-B310	Muan	ITS	OP597964
	SFC20220920-C194	Muan	ITS	OP597965
	SFC20190416-M07	Muan	ITS	OP597966
Paraphoma sp. 1	SFC20220920-B079	Ganghwa	ITS	OP597967
	SFC20220920-B082	Ganghwa	ITS	OP597968
Parasarocladium gamsii	SFC20220920-B330	Muan	ITS	OP597969
	SFC20220920-C092	Muan	ITS	OP597970
	SFC20220920-C093	Muan	ITS	OP597971
	SFC20220920-C340	Muan	ITS	OP597972
Parasarocladium sp. 1	SFC20220920-G159	Muan	ITS	OP597973
Parathyridaria sp. 1	SFC20220920-B436	Suncheon	ITS	OP597974
Penicillium acidum	SFC102936	Suncheon	BenA	OP611710
	SFC20220920-B546	Suncheon	BenA	OP611711
Penicillium allii	SFC20220920-D001	Ulsan	BenA	OP611717
	SFC20220920-D002	Ulsan	BenA	OP611719
	SFC20220920-D410	Ulsan	BenA	OP611718
Penicillium allsoppiae	SFC20220920-B332	Muan	BenA	MK134666
	SFC20220920-B334	Muan	BenA	OP611749
Penicillium aurantioviolaceum	SFC20220920-B084	Ganghwa	BenA	OP611706
	SFC20220920-B099	Ganghwa	BenA	OP611707
	SFC20220920-B101	Ganghwa	BenA	OP611708
	SFC20220920-B463	Ganghwa	BenA	OP611709
Penicillium hialowiezense	SFC20220920-D005	Goseong	BenA	OP611728
	SFC20220920-D006	Goseong	BenA	OP611720
	SFC20220920-D337	Goseong	BenA	OP611729
	SFC20220920-D342	Goseong	BenA	OP611731
Penicillium brasilianum	SFC20220920-G459	Muan	BenA	OP611753
i enternam orașitantan	SFC20220920-G460	Muan	BenA	OP611754
	SFC20220920-G461	Muan	BenA	OP611756
	SFC20220920-G510	Muan	BenA	OP611755
	SFC20220920-G534	Muan	BenA	OP611758
	SEC20220920-G559	Muan	BenA	OP611757
Panicillium hussumansa	SEC20220920-0357	Muan	BenA	OP611698
Panicillium citraosulfuratum	SEC20170821 M07	Muan	BanA	OP611803
Tenculum cureosujuralum	SEC20200821-M07	Muan	DenA BanA	OP611805
	SEC20200821-M02	Muan	DenA BanA	OP611803
Ponicillium citrinum	SEC20171010 M08	Muon	DenA BanA	OP611784
Fenicultum curinum	SEC20220020 B262	Muan	DenA Bon A	OP611785
	SFC20220920-B202	Muan	DenA D A	OP011785
	SFC20220920-B341	Muan	BenA B A	OP611789
	SEC20220920-C244	Muor	DenA Dora A	OP611787
	SFC20220920-C203	Muor	BenA BonA	OP611786
Damiaillium aandantiila	SEC20220920-C342	iviuaíl Surahac	DenA DenA	OP(1190)
генсинит согуюрпнит	SEC20120219 M14	Suncheon	DenA DenA	OP611800
	SFC201/0/18-M14	Suncheon	DENA	UF01160/

Species	Strain name	Sample site	PCR region	Accession number
Penicillium cremeogriseum	SFC20200506-M19	Muan	BenA	OP611760
	SFC20220920-G039	Muan	BenA	OP611761
Penicillium crustosum	SFC20220920-B122	Ganghwa	BenA	OP611720
Penicillium daejeonium	SFC20220920-B252	Muan	BenA	OP611715
	SFC20220920-G491	Muan	BenA	OP611716
Penicillium decaturense	SFC20220920-C271	Ganghwa	BenA	OP611791
	SFC20190612-M03	Ganghwa	BenA	OP611792
	SFC20220920-D010	Ganghwa	BenA	OP611794
	SFC20220920-D065	Ganghwa	BenA	OP611793
	SFC20220920-D393	Ganghwa	BenA	OP611795
Penicillium digitatum	SFC20220920-C245	Jeju	BenA	OP611727
Penicillium exsudans	SFC20220920-B254	Muan	BenA	OP611713
	SFC20220920-B256	Muan	BenA	OP611714
	SFC20220920-B492	Muan	BenA	OP611712
Penicillium fructuariae-cellae	SFC20220920-B107	Ganghwa	BenA	OP611699
	SFC20220920-G436	Ganghwa	BenA	OP611700
	SFC20220920-G438	Ganghwa	BenA	OP611702
	SFC20220920-G454	Ganghwa	BenA	OP611705
	SFC20220920-G500	Ganghwa	BenA	OP611703
	SFC20220920-G521	Ganghwa	BenA	OP611701
	SFC20220920-G531	Ganghwa	BenA	OP611704
Penicillium globosum	SFC20220920-G177	Ganghwa	BenA	OP611759
Penicillium hetheringtonii	SFC20220920-B343	Muan	BenA	OP611790
Penicillium janczewskii	SFC20170718-M08	Ulsan	BenA	OP611752
-	SFC20190514-M09	Ulsan	BenA	OP611750
Penicillium javanicum	SFC20220920-G462	Muan	BenA	OP611777
Penicillium jejuense	SFC20220920-G233	Jeju	BenA	OP611697
	SFC20220920-G505	Jeju	BenA	OP611695
	SFC20220920-G547	Jeju	BenA	OP611696
Penicillium koreense	SFC20220920-B445	Suncheon	BenA	OP611763
	SFC20220920-B473	Suncheon	BenA	OP611767
	SFC20220920-B475	Suncheon	BenA	OP611764
	SFC20220920-B477	Suncheon	BenA	OP611765
	SFC20220920-B479	Suncheon	BenA	OP611766
	SFC20220920-B490	Suncheon	BenA	OP611768
Penicillium madriti	SFC20220920-D289	Ganghwa	BenA	OP611733
Penicillium malodoratum	SFC20220920-G126	Suncheon	BenA	OP611748
Penicillium menonorum	SFC20200821-M04	Muan	BenA	OP611808
	SFC20220920-D344	Muan	BenA	OP611809
Penicillium ochrochloron	SFC20170718-M07	Ulsan	BenA	OP611778
	SFC20220920-B497	Ulsan	BenA	OP611779
Penicillium olsonii	SFC20220920-G001	Muan	BenA	OP611734
	SFC20220920-G004	Muan	BenA	OP611735
	SFC20220920-G005	Muan	BenA	OP611743
	SFC20220920-G225	Muan	BenA	OP611739
	SFC20220920-G246	Muan	BenA	OP611746
	SFC20220920-G247	Muan	BenA	OP611744
	SFC20220920-G259	Muan	BenA	OP611740
	SFC20220920-G382	Muan	BenA	OP611736
	SFC20220920-G383	Muan	BenA	OP611747

Species	Strain name	Sample site	PCR region	Accession number
	SFC20220920-G384	Muan	BenA	OP611737
	SFC20220920-G433	Muan	BenA	OP611745
	SFC20220920-G477	Muan	BenA	OP611738
	SFC20220920-G519	Muan	BenA	OP611741
	SFC20220920-G526	Muan	BenA	OP611742
Penicillium ortum	SFC20200506-M55	Goseong	BenA	OP611762
Penicillium oxalicum	SFC20220920-B109	Ganghwa	BenA	OP611780
	SFC20220920-B239	Ganghwa	BenA	OP611781
	SFC20220920-G149	Ganghwa	BenA	OP611783
	SFC20220920-G175	Ganghwa	BenA	OP611782
Penicillium paneum	SFC20220920-G558	Ganghwa	BenA	OP611725
Penicillium raperi	SFC20220920-B308	Muan	BenA	OP611769
	SFC20220920-B317	Muan	BenA	OP611770
	SFC20220920-G348	Muan	BenA	OP611772
	SFC20220920-G389	Muan	BenA	OP611773
	SFC20220920-G414	Muan	BenA	OP611774
	SFC20220920-G432	Muan	BenA	OP611771
Penicillium roqueforti	SFC20180817-M15	Ganghwa	BenA	OP611726
Penicillium rubens	SFC20171218-M02	Goseong	BenA	OP611721
	SFC20220920-B560	Goseong	BenA	OP611723
	SFC20220920-B569	Goseong	BenA	OP611724
	SFC20220920-D331	Goseong	BenA	OP611722
Penicillium vallebormidaense	SFC20220920-G026	Ganghwa	BenA	OP611810
Penicillium sp. 1	SFC20171120-M01	Muan	BenA	OP611751
Penicillium sumatraense	SFC20220920-B115	Ganghwa	BenA	OP611796
	SFC20220920-B287	Ganghwa	BenA	OP611801
	SFC20220920-G196	Ganghwa	BenA	OP611797
	SFC20220920-G415	Ganghwa	BenA	OP611798
	SFC20220920-G447	Ganghwa	BenA	OP611800
	SFC20220920-G472	Ganghwa	BenA	OP611799
Penicillium terrigenum	SFC20220920-B318	Muan	BenA	OP611802
Penicillium virgatum	SFC20190514-M07	Suncheon	BenA	OP611732
Penicillium yunnanense	SFC20220920-B544	Goseong	BenA	OP611775
	SFC20220920-G010	Goseong	BenA	OP611776
Periconia sp. 1	SFC20220920-B088	Ganghwa	ITS	OP597980
Periconia sp. 2	SFC20220920-B527	Jeju	ITS	OP597981
Peroneutypa sp. 1	SFC20180817-M25	Muan	ITS	OP597982
	SFC20190416-M05	Muan	ITS	OP597983
	SFC20220920-G205	Muan	ITS	OP597984
Phaeoacremonium sp. 1	SFC20220920-C385	Jeju	ITS	OP597985
Phaeosphaeria sp. 1	SFC20220920-B338	Muan	ITS	OP597986
Phaeosphaeria sp. 2	SFC20220920-D293	Ulsan	ITS	OP597987
	SFC20220920-D388	Ulsan	ITS	OP597988
	SFC20220920-D412	Ulsan	ITS	OP597989
Phaeosphaeria sp. 3	SFC20220920-C099	Jeiu	ITS	OP597990
Phaeosphaeria sp. 4	SFC20220920-C179	Suncheon	ITS	OP597991
Phaeosphaeria spartinae	SFC20220920-B080	Ganghwa	ITS	OP597992
Phialemoniopsis curvata	SFC20220920-G140	Ganghwa	ITS	OP597998
A	SFC20220920-G362	Ganghwa	ITS	OP597999
Phialocephala dimorphospora	SFC20170821-M09	Suncheon	ITS	OP598000
1 I I I I I I I I I I I I I I I I I I I				

Species	Strain name	Sample site	PCR region	Accession number
Pichia membranifaciens	SFC20190612-M22	Ulsan	ITS	OP598001
Plectosphaerella oratosquillae	SFC20220920-D401	Ulsan	ITS	OP598002
	SFC20220920-G024	Ulsan	ITS	OP598003
	SFC20220920-G130	Ulsan	ITS	OP598004
	SFC20220920-G133	Ulsan	ITS	OP598005
	SFC20220920-G282	Ulsan	ITS	OP598006
Preussia terricola	SFC20220920-G242	Suncheon	ITS	OP598007
Pringsheimia sp. 1	SFC20220920-B081	Ganghwa	ITS	OP598008
	SFC20220920-G263	Ganghwa	ITS	OP598009
Pseudocercospora adansoniae	SFC20220920-G068	Ganghwa	ITS	OP598010
Pseudogymnoascus roseus	SFC20220920-G207	Ganghwa	ITS	OP598011
	SFC20220920-G289	Ganghwa	ITS	OP598012
Pseudopithomyces rosae	SFC20220920-C046	Jeju	ITS	OP598013
Purpureocillium lilacinum	SFC20171218-M01	Goseong	ITS	OP598014
Pyrenochaetopsis leptospora	SFC20220920-B078	Ganghwa	ITS	OP598015
	SFC20220920-B104	Ganghwa	ITS	OP598016
	SFC20220920-B498	Ganghwa	ITS	OP598017
	SFC20220920-G063	Ganghwa	ITS	OP598018
Pyrenochaetopsis sp. 1	SFC20220920-B280	Muan	ITS	OP598019
	SFC20220920-B345	Muan	ITS	OP598020
	SFC20220920-B348	Muan	ITS	OP598021
Roussoella solani	SFC20220920-B513	Jeju	ITS	OP598023
	SFC20220920-G107	Jeju	ITS	OP598024
Roussoella sp. 1	SFC20190312-M03	Suncheon	ITS	OP598025
	SFC20190312-M05	Suncheon	ITS	OP598026
	SFC20220920-B514	Suncheon	ITS	OP598027
	SFC20190612-M24	Suncheon	ITS	OP598028
Sarocladium implicatum	SFC20170821-M10	Suncheon	ITS	OP598029
	SFC20220920-G099	Suncheon	ITS	OP598030
	SFC20220920-G341	Suncheon	ITS	OP598031
Sarocladium kiliense	SFC20190612-M13	Jeju	ITS	OP598032
Sarocladium sp. 1	SFC20220920-B529	Jeju	ITS	OP598033
Sarocladium strictum	SFC20220920-B096	Ganghwa	ITS	OP598034
Scolecofusarium ciliatum	SFC20220920-G003	Muan	ITS	OP598036
Scytalidium sp. 1	SFC20220920-G153	Ganghwa	ITS	OP598037
Setophaeosphaeria sp. 1	SFC20220920-B435	Suncheon	ITS	OP598038
Stachybotrys chartarum	SFC20220920-D419	Ganghwa	ITS	OP598039
Stagonosporopsis crystalliniformis	SFC20220920-C195	Suncheon	ITS	OP598040
Stemphylium vesicarium	SFC20220920-B517	Jeju	ITS	OP598041
Stephanonectria keithii	SFC20220920-B434	Suncheon	ITS	OP598042
	SFC20220920-C042	Suncheon	ITS	OP598043
Talaromyces aculeatus	SFC20220920-G017	Muan	BenA	OP584164
Talaromyces adpressus	SFC20220920-G458	Ganghwa	BenA	OP584165
Talaromyces amestolkiae	SFC20220920-G498	Muan	BenA	OP584166
Talaromyces aurantiacus	SFC20220920-B123	Ganghwa	BenA	OP584162
	SFC20180817-M18	Ganghwa	BenA	OP584163
Talaromyces diversiformis	SFC20220920-G525	Muan	BenA	OP584167
Teichospora sp. 1	SFC20220920-G102	Muan	ITS	OP598044
	SFC20220920-B522	Jeju	ITS	OP598045
	SFC20190612-M18	Jeju	ITS	OP598046

Species	Strain name	Sample site	PCR region	Accession number
Trichoderma afroharzianum	SFC20220920-G019	Ganghwa	tef1	OP584149
	SFC20220920-G062	Ganghwa	tefl	OP584150
Trichoderma asperellum	SFC20180619-M24	Suncheon	tefl	OP584155
	SFC20220920-B480	Suncheon	tefl	OP584156
	SFC20220920-B481	Suncheon	tefl	OP584157
	SFC20220920-B484	Suncheon	tefl	OP584159
	SFC20220920-B491	Suncheon	tefl	OP584158
Trichoderma guizhouense	SFC20170919-M01	Jeju	tefl	OP584151
	SFC20190312-M12	Jeju	tefl	OP584152
Trichoderma paratroviride	SFC20220920-B462	Suncheon	tefl	OP584153
Trichoderma simmonsii	SFC20200604-M14	Ganghwa	tefl	OP584147
Trichoderma songyi	SFC20171120-M04	Muan	tef1	OP584161
Trichoderma sp. 1	SFC20220920-G109	Ganghwa	tefl	OP584154
Trichoderma sp. 2	SFC20220920-G258	Muan	tef1	OP584146
Trichoderma sp. 3	SFC20220920-G093	Suncheon	tef1	OP584148
Trichoderma virens	SFC20220920-G397	Muan	tef1	OP584160
Trichothecium roseum	SFC20220920-G158	Muan	ITS	OP598051
	SFC20220920-G256	Muan	ITS	OP598052
Unguicularia sp. 1	SFC20220920-B438	Suncheon	ITS	OP598054
Verticillium klebahnii	SFC20220920-C049	Suncheon	ITS	OP598055
Zymoseptoria verkleyi	SFC20220920-D398	Ulsan	ITS	OP598057
Basidiomycota				
Antrodia sinuosa	SFC20220920-D361	Ganghwa	ITS	OP597859
Bjerkandera adusta	SFC20220920-B500	Ulsan	ITS	OP597872
Ceriporia lacerata	SFC20220920-G027	Muan	ITS	OP597876
	SFC20220920-G182	Muan	ITS	OP597877
Collybiopsis confluens	SFC20220920-B098	Ganghwa	ITS	OP597891
Coprinopsis urticicola	SFC20220920-G073	Muan	ITS	OP597893
Daedaleopsis confragosa	SFC20220920-D318	Ganghwa	ITS	OP597900
Gymnopus sp. 1	SFC20220920-B501	Ulsan	ITS	OP597915
Inocybe sp. 1	SFC20220920-B534	Goseong	ITS	OP597927
Peniophora bicornis	SFC20220920-G032	Suncheon	ITS	OP597975
Peniophora pseudoversicolor	SFC20220920-B329	Muan	ITS	OP597976
Peniophora sp. 1	SFC20220920-B073	Ganghwa	ITS	OP597977
	SFC20220920-B325	Ganghwa	ITS	OP597978
	SFC20220920-G152	Ganghwa	ITS	OP597979
Phanerochaete livescens	SFC20220920-G217	Ulsan	ITS	OP597993
	SFC20220920-G231	Ulsan	ITS	OP597994
	SFC20220920-G232	Ulsan	ITS	OP597995
	SFC20220920-G367	Ulsan	ITS	OP597996
Phanerochaete sp. 1	SFC20220920-C369	Suncheon	ITS	OP597997
Rhodotorula mucilaginosa	SFC20220920-B138	Ganghwa	ITS	OP598022
Schizophyllum commune	SFC20220920-G338	Muan	ITS	OP598035
Trametes versicolor	SFC20220920-B511	Jeju	ITS	OP598047
Trichosporon ovoides	SFC20220920-C004	Muan	ITS	OP598048
	SFC20220920-G320	Muan	ITS	OP598049
	SFC20220920-G333	Muan	ITS	OP598050
Xeromphalina cauticinalis	SFC20220920-B505	Ulsan	ITS	OP598056
Mucoromycota				
Absidia cuneospora	SFC20170718-M10	Goseong	ITS	OP597821

Species	Strain name	Sample site	PCR region	Accession number
Actinomucor elegans	SFC20220920-G143	Ulsan	ITS	OP597832
Mucor circinelloides	SFC20220920-B266	Muan	ITS	OP597934
	SFC20190312-M04	Muan	ITS	OP597935
	SFC20220920-C088	Muan	ITS	OP597936
Mucor sp. 1	SFC20220920-G288	Suncheon	ITS	OP597937
Umbelopsis sp. 1	SFC20220920-B257	Muan	ITS	OP598053

Fungal phyla are in bold font

Fig. 2 A The proportion of isolated fungal species by phylum and genus. B Predominant fungal species diversity from three seasides of the Korean Peninsula

Fig. 3 A Venn diagram of the total, unique, and shared fungal species obtained from each seaside. B Proportions of fungi by seasides (western, southern, eastern)

Further, 123 species were isolated only from the western seaside, and 68 and 22 species were isolated only from the southern and eastern seasides, respectively. *Cladosporium* and *Penicillium* were found abundantly in all areas (Fig. 3B). Among the 34 species of *Cladosporium*, 23 were uniquely detected from only one of the seasides: 18 from the western seaside and four from the southern seaside; *C. macadamiae* was only detected from the eastern seaside. For *Penicillium*, 18, five, and four unique species were detected in the western, southern, and eastern seasides, respectively. Additionally, 11 species of *Aspergillus* were found, of which 8 and 3 were respectively found only on the western and the southern seaside. Other species also showed apparent distributional differences depending on the seaside.

The alpha diversity indices, species abundance, Chao1 richness, and Shannon's diversity were all highest in the western seaside and lowest in the eastern seaside (Fig. 4A). However, statistically significant differences were not found in the ANOVA and post-hoc tests between seasides. A clear separation between seasides was found in the CAP ordination plot, but significant differences were not found between seasides for the different ocean currents in the PER-MANOVA test (p = 0.075, $R^2 = 0.095$; Fig. 4B).

Discussion

Beach sands are exposed to a highly dynamic environment that changes daily or even with the tidal cycle. Quantitative research showed that beach sands of the Korean Peninsula possess a high diversity of arenicolous fungi despite the nutrient-poor sand dune with high salinity, fluctuating temperature, and tidal currents. Notably, the fungal diversity on the coasts of the Korean Peninsula was higher than on other beach sands (Ghinsberg et al., 1994; Vogel et al., 2007; Walker & Robicheau, 2021; Yee et al., 2016). Most species isolated in this study were classified into the Ascomycota phylum. Ascomycota species are major marine fungi, commonly found in the marine environment, such as sediment, seawater, and salt marsh (Calabon et al., 2021; Tisthammer et al., 2016; Velez et al., 2021), and many are facultative marine fungi. These marine fungi are responsible for decomposing woody substrates and other marine organisms (Hyde et al., 1998; Patyshakuliyeva et al., 2019).

Penicillium and *Cladosporium* were the most abundant genera in the beach sand. *Penicillium* species have been repeatedly reported in various marine environments, such as sand, seawater, and macroalgae (Park et al., 2014, 2019). *Penicillium* strains isolated from the intertidal zone have cellulase and protease activity, indicating that they act as decomposers in marine environments (Park et al., 2019). *Cladosporium* species inhabit marine environments, such as sediments, seawater, seaweed, and mangrove forests for their halotolerant and osmotolerant activities (Araújo et al., 2020; Cunliffe et al., 2017; Marchese et al., 2021; Thirumalanadhuni & Palempalli, 2018; Zalar et al., 2007).

Following the classification of marine fungi (obligate and facultative), Velez et al. (2022) also categorized MAFs into obligate and facultative MAFs: obligate MAFs complete their life cycles in the intertidal and subtidal region of marine sandy beaches, whereas facultative MAFs are terrestrial- and freshwater-borne fungi with active growth in sandy beaches. Only one obligate MAF, Corollospora gracilis, was identified in this study. Corollospora species are mostly found in marine habitats, especially sand grains and shell fragments (Kohlmeyer & Kohlmeyer, 1979; Velez et al., 2022). Corollospora gracilis also form ascoma and attach to thick and hard materials such as sand grains (Hsieh et al., 2007). Paradendryphiella arenariae is the only facultative MAF species reported in Korea (Lee et al., 2019b), but it was not detected in this study. The MAF types of the remaining isolated species are unknown, i.e., whether they are obligate or facultative. Nonetheless, many fungal species, including Penicillium and Cladosporium, are frequently found in marine environments such as beach sand. Thus, as suggested by Jones et al. (2015) and Velez et al. (2022),

Fig. 4 A Alpha diversity indices of fungi from the three seasides. B Constrained analysis of principal coordinates (CAP) plots for fungal communities based on Jaccard distance

fungi repeatedly isolated from beach sand environments may be reevaluated as facultative MAFs.

Some species are predicted to have come from the terrestrial inland. *Alternaria angustiovoidea* species were known to have pathogenicity on coastal sand inhibiting plants, leafy spurge, which are distributed along the coast of the Korean Peninsula (Yang et al., 1993). Other common species, such as *Cladosporium anthropophilum* and *Penicillium fructuariae-cellae* inhibat terrestrial niches (Lee et al., 2019a; Lorenzini et al., 2019). Isolates belonging to Basidiomycota and Mucoromycota were mostly saprotrophic fungi, which are commonly found in decayed woods, leaf litter, or soil in surrounding forests. These fungi may be introduced to beach sand by other organisms or wind and survive the harsh conditions in beach sands in dormant states or as spores (Mysyakina et al., 2016; Nguyen, 2018).

The different composition and number of fungi by seasides may be explained by the differential characteristics of each seaside. GH and MA in the West Sea and SC in the South Sea, with high biodiversity, have wide tidal flats beside the beach sand. Meanwhile, the species diversity is low in GS and US in the East Sea and JJ in the South Sea, where all three sites only consist of beach sand. The tidal flats are biodiversity hotspots and have high microbial diversity (Li et al., 2019; Lv et al., 2016; Ryu et al., 2011). Therefore, the presence of a tidal flat may have influenced the MAF abundance and diversity of the nearby beach sands.

In addition to the coastal characteristics, the dynamic ecosystems of the intertidal zone are usually influenced by natural forces, such as ocean currents, wind (Brand et al., 2020), or input of adjacent environments (Colombini & Chelazzi, 2003). Similarly, natural forces seem to affect marine fungi inhabiting beach sands. As mentioned above, some species appear to be of terrestrial origin. However, most terrestrial Ascomycota species are frequently reported in marine environments. They are likely to have settled on beach sands by ocean currents. Therefore, we isolated fungi from three seasides, considering the ocean currents. Only 9 of 259 species were found in all three seasides, and many species were found unique to each seaside.

In *Penicillium*, 27 out of 40 species were distributed differently depending on the coast. For example, *Penicillium jejuense*, first reported from Jeju Island located in the southern Korean Peninsula (Park et al., 2015b), was detected only from the southern seaside in this study. *Penicillium menonorum* strains were found exclusively in the western seaside in this study; the species were also found in a tidal flat adjacent to the sampling site (Park et al., 2020). A similar result was found in our previous study: the *Penicillium* community displayed a significant variation relative to the seaside (western and southern coast; Park et al., 2019). The obligate MAF, *Corollospora gracilis*, was found only in the East Sea in this study and a

previous study (Lee et al., 2019b). Given that distribution of many marine-inhabiting species is affected by ocean currents (Li et al., 2018; Nakagiri et al., 1999; Park et al., 2019), our results show that the composition of MAFs varied by the different ocean currents flowing along each coast. However, the sampling site exerted no statistically significant effect on the fungal community. This might be because fungi of terrestrial origin were included in the statistical analysis. A more precise conclusion may be drawn when the MAFs of marine origin are clearly defined.

In conclusion, our study provides information on MAFs associated with three different seasides on the Korean Peninsula. Using a culture-based approach, we isolated 603 fungal strains and identified them as 259 fungal species based on phylogenetic analysis. These results indicate that many MAFs inhabit the beach sand, and each seaside has a distinct fungal composition. The abundance and diversity of MAFs were influenced by the presence of the tidal flat, and the compositions of MAFs were shaped by the ocean currents. By extending the list of the Korean arenicolous fungal species, this study provides a basis for further research on arenicolous fungal communities and distributions on seasides.

Acknowledgements This work was supported by the management of Marine Fishery Bio-resources Center (2023) funded by the National Marine Biodiversity Institute of Korea (MABIK).

Data availability The authors confirm that the data supporting the findings of this study are available within this article.

Declarations

Conflict of interest The authors have no conflict of interest to report.

References

- Anderson, M. J., & Willis, T. J. (2003). Canonical analysis of principal coordinates: A useful method of constrained ordination for ecology. *Ecology*, 84, 511–525.
- Araújo, C. A., Ferreira, P. C., Pupin, B., Dias, L. P., Avalos, J., Edwards, J., Hallsworth, J. E., & Rangel, D. E. (2020). Osmotolerance as a determinant of microbial ecology: A study of phylogenetically diverse fungi. *Fungal Biology*, 124, 273–288.
- Baek, S. H. (2012). First report for appearance and distribution patterns of the epiphytic dinoflagellates in the Korean peninsula. *Korean Journal of Environmental Biology*, 30, 355–361.
- Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. *Journal of the Royal Statistical Society: Series B*, 57, 289–300.
- Brand, E., Chen, M., & Montreuil, A. L. (2020). Optimizing measurements of sediment transport in the intertidal zone. *Earth Science Reviews*, 200, 103029.
- Brandão, J., Gangneux, J., Arikan-Akdagli, S., Barac, A., Bostanaru, A., Brito, S., Bull, M., Çerikçioğlu, N., Chapman, B., & Efstratiou, M. (2021). Mycosands: Fungal diversity and abundance in beach sand and recreational waters—Relevance to human health. *Science of the Total Environment, 781*, 146598.

- Bugni, T. S., & Ireland, C. M. (2004). Marine-derived fungi: A chemically and biologically diverse group of microorganisms. *Natural Products Reports*, 21, 143–163.
- Calabon, M. S., Jones, E. B. G., Promputtha, I., & Hyde, K. D. (2021). Fungal biodiversity in salt marsh ecosystems. *Journal of Fungi*, 7, 648.
- Carbone, I., & Kohn, L. M. (1999). A method for designing primer sets for speciation studies in filamentous ascomycetes. *Mycologia*, 91, 553–556.
- Chang, K. I., Zhang, C. I., Park, C., Kang, D. J., Ju, S. J., Lee, S. H., & Wimbush, M. (2016). Oceanography of the East Sea (Japan Sea) (p. 17). Cham: Springer International Publishing.
- Colombini, I., & Chelazzi, L. (2003). Influence of marine allochthonous input on sandy beach communities. *Oceanography and Marine Biology*, 41, 123–127.
- Cunliffe, M., Hollingsworth, A., Bain, C., Sharma, V., & Taylor, J. D. (2017). Algal polysaccharide utilisation by saprotrophic planktonic marine fungi. *Fungal Ecology*, *30*, 135–138.
- Defeo, O., & McLachlan, A. (2005). Patterns, processes and regulatory mechanisms in sandy beach macrofauna: A multi-scale analysis. *Marine Ecology Progress*, 295, 1–20.
- Frenkel, M., Yunik, Y., Fleker, M., Blum, S. E., Sionov, E., Elad, D., Serhan, H., & Segal, E. (2020). Fungi in sands of Mediterranean Sea beaches of Israel—Potential relevance to human health and well-being. *Mycoses*, 63, 1255–1261.
- Gardes, M., & Bruns, T. D. (1993). ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. *Molecular Ecology*, 2, 113–118.
- Ghinsberg, R., Bar Dov, L., Rogol, M., Sheinberg, Y., & Nitzan, Y. (1994). Monitoring of selected bacteria and fungi in sand and sea water along the Tel Aviv coast. *Microbios*, 77, 29–40.
- Glass, N. L., & Donaldson, G. C. (1995). Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. *Applied and Environment Microbiol*ogy, 61, 1323–1330.
- Hsieh, S. Y., Moss, S. T., & Jones, E. B. G. (2007). Ascoma development in the marine ascomycete *Corollospora gracilis* (Halosphaeriales, Hypocreomycetidae, Sordariomycetes). *Botanica Marina*, 50, 1–12.
- Huang, X. L., Gao, Y., Xue, D. Q., Liu, H. L., Peng, C. S., Zhang, F. L., Li, Z. Y., & Guo, Y. W. (2011). Streptomycindole, an indole alkaloid from a marine *Streptomyces* sp. DA22 associated with South China Sea sponge *Craniella australiensis*. *Helvetica Chimica Acta*, 94, 1838–1842.
- Hyde, K. D., Jones, E. B. G., Leaño, E., Pointing, S. B., Poonyth, A. D., & Vrijmoed, L. L. (1998). Role of fungi in marine ecosystems. *Biodiversity and Conservation*, 7, 1147–1161.
- Jones, E. B. G. (2000). Marine fungi: Some factors influencing biodiversity. *Fungal Diversity*, 4, 53–73.
- Jones, E. B. G. (2011). Fifty years of marine mycology. Fungal Diversity, 50, 73–112.
- Jones, E. B. G., & Pang, K. L. (2012). Tropical aquatic fungi. Biodiversity and Conservation, 21, 2403–2423.
- Jones, E. B. G., Suetrong, S., Sakayaroj, J., Bahkali, A. H., Abdel-Wahab, M. A., Boekhout, T., & Pang, K. L. (2015). Classification of marine ascomycota, basidiomycota, blastocladiomycota and chytridiomycota. *Fungal Diversity*, 73, 1–72.
- Koh, C. H., & Khim, J. S. (2014). The Korean tidal flat of the Yellow Sea: Physical setting, ecosystem and management. Ocean and Coastal Management, 102, 398–414.
- Kohlmeyer, J., & Kohlmeyer, E. (1979). Marine mycology. Academic Press.
- Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. *Molecular Biology and Evolution*, 33, 1870–1874.

- Lee, D. J., Lee, J. S., Lee, H. B., & Choi, Y. J. (2019a). Four endophytic ascomycetes new to Korea: *Cladosporium anthropophilum*, *C. pseudocladosporioides*, *Daldinia eschscholtzii*, and *Nigrospora chinensis*. *The Korean Journal of Mycology*, 47, 187–197.
- Lee, S., Park, M. S., Lee, H., Kim, J. J., Eimes, J. A., & Lim, Y. W. (2019b). Fungal diversity and enzyme activity associated with the macroalgae, *Agarum clathratum*. *Mycobiology*, 47, 50–58.
- Lee, S., Park, M. S., & Lim, Y. W. (2016). Diversity of marine-derived Aspergillus from tidal mudflats and sea sand in Korea. Mycobiology, 44, 237–247.
- Li, P. D., Jeewon, R., Aruna, B., Li, H. Y., Lin, F. C., & Wang, H. K. (2019). Metabarcoding reveals differences in fungal communities between unflooded versus tidal flat soil in coastal saline ecosystem. *Science of the Total Environment*, 690, 911–922.
- Li, W., Wang, M., Pan, H., Burgaud, G., Liang, S., Guo, J., Luo, T., Li, Z., Zhang, S., & Cai, L. (2018). Highlighting patterns of fungal diversity and composition shaped by ocean currents using the East China Sea as a model. *Molecular Ecology*, 27, 564–576.
- Lorenzini, M., Cappello, M. S., Perrone, G., Logrieco, A., & Zapparoli, G. (2019). New records of *Penicillium* and *Aspergillus* from withered grapes in Italy, and description of *Penicillium fructuariaecellae* sp. nov. *Phytopathologia Mediterranea*, 58, 323–340.
- Lv, X., Ma, B., Yu, J., Chang, S. X., Xu, J., Li, Y., Wang, G., Han, G., Bo, G., & Chu, X. (2016). Bacterial community structure and function shift along a successional series of tidal flats in the Yellow River Delta. *Scientific Reports*, 6, 36550.
- Marchese, P., Garzoli, L., Young, R., Allcock, L., Barry, F., Tuohy, M., & Murphy, M. (2021). Fungi populate deep-sea coral gardens as well as marine sediments in the Irish Atlantic Ocean. *Environmental Microbiology*, 23, 4168–4184.
- McMurdie, P. J., & Holmes, S. (2013). phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. *PLoS One*, 8, e61217.
- Mysyakina, I. S., Kochkina, G. A., Ivanushkina, N. E., Bokareva, D. A., & Feofilova, E. P. (2016). Germination of spores of mycelial fungi in relation to exogenous dormancy. *Microbiology*, 85, 290–294.
- Nakagiri, A., Okane, I., & Ito, T. (1999). Geographical and seasonal distribution of arenicolous marine fungi along the pacific coast of the Bousou Peninsula. *IFO Research Communications*, 19, 22–33.
- Newell, S. Y., & Porter, D. (2000). Microbial secondary production from saltmarsh grass shoots and its known potential fates. In M. P. Wienstein & D. A. Kreeger (Eds.), *Concepts and controversies in tidal marsh ecology* (pp. 159–185). Kluwer Academic.
- Nguyen, N. H. (2018). Longevity of light-and dark-colored basidiospores from saprotrophic mushroom-forming fungi. *Mycologia*, *110*, 131–135.
- O'Donnell, K., Kistler, H. C., Cigelnik, E., & Ploetz, R. C. (1998). Multiple evolutionary origins of the fungus causing Panama disease of banana: Concordant evidence from nuclear and mitochondrial gene genealogies. *Proceedings of the National Academy of Sciences of the United States of America*, 95, 2044–2049.
- Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O'Hara, R. B., & Simpson, G. L., et al. (2020). Vegan: community ecology package. R package version 2.5-7. https://CRAN.R-project.org/package=vegan. Accessed 28 Nov 2020.
- Overy, D. P., Bayman, P., Kerr, R. G., & Bills, G. F. (2014). An assessment of natural product discovery from marine (*Sensu strictu*) and marine-derived fungi. *Mycology*, 5, 145–167.
- Pang, K. L., Overy, D. P., Jones, E. B. G., da Luz Calado, M., Burgaud, G., Walker, A. K., Johnson, J. A., Kerr, R. G., Cha, H. J., & Bills, G. F. (2016). 'Marine fungi' and 'marine-derived fungi' in natural product chemistry research: Toward a new consensual definition. *Fungal Biology Reviews*, 30, 163–175.
- Park, M. S., Eom, J. E., Fong, J. J., & Lim, Y. W. (2015a). New record and enzyme activity of four species in *Penicillium* section *Citrina*

from marine environments in Korea. *Journal of Microbiology*, 53, 219–225.

- Park, M. S., Fong, J. J., Oh, S. Y., Houbraken, J., Sohn, J. H., Hong, S. B., & Lim, Y. W. (2015b). *Penicillium jejuense* sp. nov., isolated from the marine environments of Jeju Island, Korea. *Mycologia*, 107, 209–216.
- Park, M. S., Fong, J. J., Oh, S. Y., Kwon, K. K., Sohn, J. H., & Lim, Y. W. (2014). Marine-derived *Penicillium* in Korea: Diversity, enzyme activity, and antifungal properties. *Antonie Van Leeuwenhoek*, 106, 331–345.
- Park, M. S., Kim, S. H., Lee, J. W., Kim, J. S., Cho, Y., & Lim, Y. W. (2020). Two unrecoreded species belonging to *Penicillium* section *Exilicaulis* in South Korea. *The Korean Journal of Mycology*, 48, 175–185.
- Park, M. S., Oh, S. Y., Fong, J. J., Houbraken, J., & Lim, Y. W. (2019). The diversity and ecological roles of *Penicillium* in intertidal zones. *Scientific Reports*, 9, 13540.
- Park, K. A., Park, J. E., Choi, B. J., Lee, S. H., Shin, H. R., Lee, S. R., Byun, D. S., Kang, B., & Lee, E. (2017). Schematic maps of ocean currents in the Yellow Sea and the East China Sea for science textbooks based on scientific knowledge from oceanic measurements. *Journal of the Korean Society of Oceanography*, 22, 151–171.
- Park, J. S., Quang, T. H., Yoon, C. S., Kim, H. J., Sohn, J. H., & Oh, H. (2018). Furanoaustinol and 7-acetoxydehydroaustinol: New meroterpenoids from a marine-derived fungal strain *Penicillium* sp. SF-5497. *Journal of Antibiotics*, 71, 557–563.
- Patyshakuliyeva, A., Falkoski, D. L., Wiebenga, A., Timmermans, K., & de Vries, R. P. (2019). Macroalgae derived fungi have high abilities to degrade algal polymers. *Microorganisms*, 8, 52.
- Peterson, S. W., Vega, F. E., Posada, F., & Nagai, C. (2005). *Penicillium coffeae*, a new endophytic species isolated from a coffee plant and its phylogenetic relationship to *P. fellutanum*, *P. thiersii* and *P. brocae* based on parsimony analysis of multilocus DNA sequences. *Mycologia*, 97, 659–666.
- Pham, T. T., Dinh, K. V., & Nguyen, V. D. (2021). Biodiversity and enzyme activity of marine fungi with 28 new records from the tropical coastal ecosystems in Vietnam. *Mycobiology*, 49, 559–581.
- R Core Team. (2022). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. Accessed 22 Oct 2022.
- Rämä, T., Hassett, B. T., & Bubnova, E. (2017). Arctic marine fungi: From filaments and flagella to operational taxonomic units and beyond. *Botanica Marina*, 60, 433–452.
- Rédou, V., Navarri, M., Meslet-Cladière, L., Barbier, G., & Burgaud, G. (2015). Species richness and adaptation of marine fungi from deep-subseafloor sediments. *Applied and Environment Microbiol*ogy, 81, 3571–3583.
- Richards, T. A., Jones, M. D., Leonard, G., & Bass, D. (2012). Marine fungi: Their ecology and molecular diversity. *Annual Review of Marine Science*, 4, 495–522.
- Rogers, S. O., & Bendich, A. J. (1994). Extraction of total cellular DNA from plants, algae and fungi. In S. B. Gelvin & R. A. Schilperoort (Eds.), *Plant molecular biology manual*. Springer.
- Ryu, J., Khim, J. S., Choi, J. W., Shin, H. C., An, S., Park, J., Kang, D., Lee, C. H., & Koh, C. H. (2011). Environmentally associated spatial changes of a macrozoobenthic community in the Saemangeum tidal flat, Korea. *Journal of Sea Research*, 65, 390–400.

- Sabino, R., Veríssimo, C., Cunha, M. A., Wergikoski, B., Ferreira, F. C., Rodrigues, R., Parada, H., Falcão, L., Rosado, L., Pinheiro, C., et al. (2011). Pathogenic fungi: An unacknowledged risk at coastal resorts? New insights on microbiological sand quality in Portugal. *Marine Pollution Bulletin*, 62, 1506–1511.
- Seo, M. H., Choi, S. Y., Park, E. O., Jeong, D., & Soh, H. Y. (2018). Species diversity of planktonic copepods and distribution characteristics of its major species in coastal waters of Korea. *Korean Journal of Environmental Biology*, 36, 525–537.
- Sohn, H., Park, K. J., An, Y. R., Choi, S. G., Kim, Z. G., Kim, H. W., An, D. H., Lee, Y. R., & Park, T. G. (2012). Distribution of whales and dolphins in Korean waters based on a sighting survey from 2000 to 2010. *Korean Journal of Fisheries and Aquatic Sciences*, 45, 486–492.
- Thirumalanadhuni, V., & Palempalli, U. D. (2018). Molecular characterization and endophytic life style pattern of *Cladosporium uredinicola* derived from marine brown alga *Dictyota dichotoma*. *Journal of Pure and Applied Microbiology*, *12*, 1661–1666.
- Tisthammer, K. H., Cobian, G. M., & Amend, A. S. (2016). Global biogeography of marine fungi is shaped by the environment. *Fungal Ecology*, 19, 39–46.
- Velez, P., Walker, A. K., Gasca-Pineda, J., Barrios, A., Divanli, D., González, M. C., & Nakagiri, A. (2021). Fine-scale temporal variation of intertidal marine fungal community structure: Insights from an impacted Baja California sandy beach in Mexico. *Marine Biodiversity*, 51, 6.
- Velez, P., Walker, A. K., González, M. C., Narayanan, S. S. S., & Nakagiri, A. (2022). In depth review of the ecology of arenicolous marine fungi. *Fungal Ecology*, 60, 101164.
- Vogel, C., Rogerson, A., Schatz, S., Laubach, H., Tallman, A., & Fell, J. (2007). Prevalence of yeasts in beach sand at three bathing beaches in South Florida. *Water Research*, 41, 1915–1920.
- Walker, A. K., & Robicheau, B. M. (2021). Fungal diversity and community structure from coastal and barrier island beaches in the United States Gulf of Mexico. *Scientific Reports*, 11, 3889.
- White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. Sninsky, & T. J. White (Eds.), *PCR protocols* (pp. 315–322). Academic Press.
- Yang, S. M., Johnson, D., & Dowler, W. (1993). Infection of leafy spurge by *Alternaria alternata* and *A. angustiovoidea* in the absence of dew. *Phytopathology*, 83, 953–958.
- Yee, T. L., Tajuddin, R., Mohamed Nor, N. M. I., Mohd, M. H., & Zakaria, L. (2016). Filamentous ascomycete and basidiomycete fungi from beach sand. *Rendiconti Lincei*, 27, 603–607.
- Zalar, P., de Hoog, G., Schroers, H. J., Crous, P., Groenewald, J., & Gunde-Cimerman, N. (2007). Phylogeny and ecology of the ubiquitous saprobe *Cladosporium sphaerospermum*, with descriptions of seven new species from hypersaline environments. *Studies in Mycology*, 58, 157–183.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.