
ORIGINAL PAPER

Marine-derived Penicillium in Korea: diversity, enzyme
activity, and antifungal properties

Myung Soo Park • Jonathan J. Fong •

Seung-Yoon Oh • Kae Kyoung Kwon •

Jae Hak Sohn • Young Woon Lim

Received: 12 March 2014 / Accepted: 23 May 2014 / Published online: 8 June 2014

� Springer International Publishing Switzerland 2014

Abstract The diversity of marine-derived Penicil-

lium from Korea was investigated using morphological

and multigene phylogenetic approaches, analyzing

sequences of the internal transcribed spacer region, b-

tubulin gene, and RNA polymerase subunit II gene. In

addition, the biological activity of all isolated strains

was evaluated. We tested for the extracellular enzyme

activity of alginase, endoglucanase, and b-glucosidase,

and antifungal activity against two plant pathogens

(Colletotrichum acutatum and Fusarium oxysporum).

A total of 184 strains of 36 Penicillium species were

isolated, with 27 species being identified. The most

common species were Penicillium polonicum

(19.6 %), P. rubens (11.4 %), P. chrysogenum

(11.4 %), and P. crustosum (10.9 %). The diversity

of Penicillium strains isolated from soil (foreshore soil

and sand) and marine macroorganisms was higher than

the diversity of strains isolated from seawater. While

many of the isolated strains showed alginase and b-

glucosidase activity, no endoglucanase activity was

found. More than half the strains (50.5 %) showed

antifungal activity against at least one of the plant

pathogens tested. Compared with other strains in this

study, P. citrinum (strain SFC20140101-M662)

showed high antifungal activity against both plant

pathogens. The results reported here expand our

knowledge of marine-derived Penicillium diversity.

The relatively high proportion of strains that showed

antifungal and enzyme activity demonstrates that

marine-derived Penicillium have great potential to be

used in the production of natural bioactive products for

pharmaceutical and/or industrial use.

Keywords Marine-derived fungi � Penicillium �
Multi-gene phylogenetic approach � Alginase � b-

Glucosidase � Antifungal activity

Introduction

Fungi are frequently found in marine environments on

substrates such as plants, animals, mud, sand, and

seawater. These fungi play important ecological roles

as decomposers of organic material and symbionts or

pathogens of other marine organisms (Hyde et al.

1998). Marine-derived fungi are not restricted to

specific clades, but rather are found throughout the

fungal tree of life, with an estimated 1,500 species

(Hyde et al. 1998; Kohlmeyer and Kohlmeyer 1979).
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These fungi can be categorized into two distinct

groups based on a broad ecological definition: obligate

and facultative marine fungi (Kohlmeyer and Kohl-

meyer 1979). Obligate marine fungi grow and spor-

ulate exclusively in marine environments and include

Asteromyces cruciatus, Dendriphiella spp., and Phi-

alophorophoma litoralis (Kohlmeyer and Volkmann-

Kohlmeyer 1991; Khudyakova et al. 2000). Faculta-

tive marine fungi are terrestrial fungi that have

adapted to marine environments and commonly

belong to Ascomycota genera such as Penicillium,

Aspergillus, Trichoderma, and Cladosporium (Khud-

yakova et al. 2000; Cantrell et al. 2006). The unique

physiochemical conditions of marine environments

result in marine-derived fungi producing a variety of

novel bioactive compounds that have the potential to

be applied to pharmaceutical and industrial uses

(Jones 2000; Raghukumar 2008).

Many marine-derived fungi are found in the genus

Penicillium. Penicillium species can be isolated from

various substrates in outdoor and indoor environments

(Pitt 1979; Samson et al. 2010), and inhabit extreme

environments such as polar regions (Vishniac 1996;

Ivanushkina et al. 2005), high altitude soils (Petrovič

et al. 2000), and marine habitats (Kagata et al. 2000;

Lin et al. 2000; Edrada et al. 2002). Numerous

bioactive compounds have been isolated from Peni-

cillium species, including mycotoxins, antibiotics,

herbicides, antioxidants, insecticides, and anticancer

compounds (Frisvad et al. 2004). In particular, marine-

derived Penicillium species are known to be producers

of secondary metabolites such as the anticancer

compound citrinadin A, DNA polymerase inhibitors

sculezonone-A and -B, and antifungal xestodecalac-

tones A–C (Edrada et al. 2002; Komatsu et al. 2000;

Tsuda et al. 2004). For example, P. dravuni isolated

from algae exhibited antibacterial activity against

methicillin-resistant Staphylococcus aureus—a bac-

terial strain that causes difficult-to-treat infections in

humans (Bugni et al. 2004).

In Korea, approximately 100 Penicillium species

have been recorded (Lee et al. 2003; Yu et al. 1997;

Kim et al. 2009; Min et al. 2014). Many of these

species were isolated from soil, and some were found

to be associated with post-harvest diseases of plant

products (Lee et al. 2003; Yu et al. 1997; Kim et al.

2009). However, the diversity of marine-derived

Penicillium in Korea is poorly understood relative to

terrestrial species. Recently, several bioresource banks

were established by the Ministry of Oceans and

Fisheries of Korea to promote the exploration of

marine biodiversity and biological resources. The

current study forms part of the Ministry’s long-term

project to study marine-derived microbes in Korea,

and had two main goals. First, we explored the

diversity of marine-derived Penicillium in Korea by

isolating Penicillium species from various marine

substrates and identifying them using a multigene

phylogenetic approach. In this approach, we

sequenced three commonly used markers for species

identification in Penicillium: the internal transcribed

spacer region (ITS) (Peterson 2000), b-tubulin (benA)

(Samson et al. 2004), and RNA polymerase subunit II

(RPB2) (Houbraken and Samson 2011). Second, we

evaluated the biological activity of the strains. Extra-

cellular enzyme activity was evaluated in the presence

of the carbon sources alginate, carboxymethyl cellu-

lose, and cellobiose, and antifungal activity was

evaluated against the plant pathogens Colletotrichum

acutatum and Fusarium oxysporum.

Materials and methods

Materials studied

Soil (foreshore soil and sand), seawater, and macroor-

ganisms (algae, crab, sponge, and mussel) were

collected from seven sites in Korea between 2007 and

2011. Six of the collection sites were along the southern

coast of Korea (Wando, Namhae, Geoje, Dadaepo,

Ilgwang, and Jeju) and one site on the eastern coast

(Uljin). Macroorganisms were processed for culturing

by the addition of two volumes of sterile seawater

followed by thorough homogenization using a blender.

Before culturing, all samples were diluted tenfold with

sterile seawater to reduce the density of colonies for

improved strain recovery. For fungal cultures, 100 lL

of each dilution was plated on potato dextrose agar

[PDA; 4 g L-1 potato infusion (Difco-Becton, Sparks,

MD, USA), 20 g L-1 glucose (Difco-Becton, Sparks,

MD, USA), 18 g L-1 agar (Difco-Becton, Sparks, MD,

USA), 750 mL L-1 seawater, 250 mL L-1 distilled

water], yeast extract peptone glucose agar [5 g L-1

yeast extract (Difco-Becton, Sparks, MD, USA),

5 g L-1 peptone (Difco-Becton, Sparks, MD, USA),

10 g L-1 glucose, 18 g L-1 agar, 750 mL L-1 seawa-

ter, 250 mL L-1 distilled water], and glucose yeast
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extract agar (0.1 g L-1 yeast extract, 5 g L-1 glucose,

18 g L-1 agar, 750 mL L-1 seawater, 250 mL L-1

distilled water). The plates were incubated at 25 �C for

7–15 days until the morphology of the culture could be

distinguished, and then each Penicillium strain was

picked and transferred onto a new PDA plate. The

strains isolated in this study were stored in 20 %

glycerol at -80 �C in the Seoul National University

Fungus Collection (SFC) (Table 1).

DNA extraction and PCR amplification

A small amount of fungal material was placed in a 29

cetyltrimethylammonium bromide buffer and ground

with a plastic pestle. Genomic DNA was extracted

using the modified extraction protocol published by

Rogers and Bendich (1994). The PCR amplifications

of ITS, benA, and RPB2 were performed using

primers ITS1F and ITS4 (White et al. 1990), Bt2a

and Bt2b (Glass and Donaldson 1995), and RPB2-

5F_Eur and RPB2-7CR_Eur (Houbraken and Samson

2011), respectively. Each PCR reaction was per-

formed on a C1000TM thermal cycler (Bio-Rad,

Richmond, CA, USA) using Maxime PCR PreMix

with StarTaqTM (Intron Biotechnology Inc., Seoul,

Korea) in a final volume of 20 lL, containing 10 pmol

of each primer and 1 lL of DNA (10 ng lL-1). PCR

amplification of each gene was performed as described

in Park et al. (2013). PCR products were electropho-

resed through a 1 % agarose gel stained with loading

STAR (Dyne Bio, Seoul, Korea) and purified using the

ExpinTM PCR Purification Kit (GeneAll Biotechnol-

ogy, Seoul, Korea) according to the manufacturer’s

instructions.

Sequencing and phylogenetic analysis

DNA sequencing using the appropriate PCR primers

for each gene was performed at the DNA Synthesis

and Sequencing Facility, Macrogen (Seoul, Korea)

using an ABI Prism 3700 genetic analyzer (Applied

Biosystems, Foster City, CA, USA). Sequences were

assembled and proofread using MEGA 5 (Tamura

et al. 2011). The resulting consensus sequences were

deposited in GenBank (accession numbers in

Table 1). Multiple DNA sequence alignments were

performed using the default settings of MAFFT v7

(Katoh and Standley 2013) and were checked by eye,

with ambiguously aligned positions adjustedT
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manually. Maximum Likelihood (ML) phylogenetic

analyses were conducted with RAxML 8.0.2 (Sta-

matakis 2014) using the GTRGAMMA model of

evolution and 1,000 bootstrap replicates.

Identification

We combined molecular and morphological methods

to identify marine-derived Penicillium species. For

molecular analyses, we compared ITS, benA, and

RPB2 sequences to type strains available on the

RefSeq database of GenBank (release 64), supple-

mented with BLAST searches of Genbank (type and

non-type strains) and the CBS Penicillium database

(http://www.cbs.knaw.nl/Collections). ITS was

sequenced for all strains, and phylogenetic analysis

was performed to determine the species clusters. From

each ITS group, 1–10 representatives were selected for

benA and RPB2 sequencing and subsequent phylo-

genetic analyses. Molecular identification of species

was done using a section-by-section approach. Pre-

liminary phylogenetic analyses were performed for

each gene to determine the Penicillium section for the

unknown strains. Next, for each gene, separate phy-

logenetic analyses were done for each section.

For morphological analyses, all strains were inoc-

ulated at three points onto Czapek yeast extract agar

(CYA) and malt extract agar (MEA, Oxoid, UK), then

incubated at 25 �C for 7 days. Additional mounts of

unidentifiable strains were made in lactic acid from

MEA colonies. Microscopic observations were made

using a light microscope (Eclipse 80i, Nikon, Tokyo,

Japan).

Enzyme and antifungal activity assays

Extracellular alginase, endoglucanase, and b-glucosi-

dase activities were assessed for each strain using plate

screening methods, in which enzyme activity was

identified by the formation of a clear zone surrounding

the colony (Gacesa and Wusteman 1990). Alginase

activity was assayed by growing the fungi on modified

peptone yeast extract salt agar supplemented with 1 %

alginic acid sodium salt (Sigma-Aldrich, St Louis,

MO, USA) as the primary carbon source (Kim et al.

2010). After incubation for 5 days, the plates were

flooded with 10 % cetylpyridinium chloride monohy-

drate (Sigma-Aldrich) for 10 min. Endoglucanase

activity was assayed by growing the fungi on

cellulolysis basal medium agar supplemented with

2 % carboxymethylcellulose (Sigma-Aldrich) as the

primary carbon source (Pointing 1999). After incuba-

tion for 5 days, the plates were flooded with 0.5 %

Congo red (Sigma-Aldrich) for 10 min, and this was

then replaced by 1 M NaCl. b-Glucosidase activity

was assayed by growing the fungi for 5 days on

cellulolysis basal medium agar supplemented with

0.5 % D-cellobiose (Sigma-Aldrich) as the primary

carbon source (Yoon et al. 2007). Next, the plates were

flooded with 0.5 % Congo red (Sigma-Aldrich) for

10 min, and this was then replaced by 1 M NaCl.

To test for antifungal activity, strains were screened

using a dual culture method with two plant pathogens,

C. acutatum (SFC20130816-01) and F. oxysporum

(SFC20130816-02). Mycelial disks (5 mm diameter)

from 5- to 7-day-old cultures were inoculated at three

points on PDA, after which the pathogen was placed

on the center of the plate and incubated at 25 �C for

5–10 days. Antifungal activity was assessed by mea-

suring the inhibition zone (Paul et al. 2012), and all

dual culture experiments were performed in triplicate.

Results

A total of 184 Penicillium strains were isolated from

three different marine substrates (soil, seawater, and

macroorganisms) at seven sites in South Korea. Of all

regions assessed, Jeju had the largest number of strains

(83), followed by Wando (51), Ilgwang (24), and

Geoje (22) (Fig. 1). The most strains were isolated

from soil (82), followed by macroorganisms (73), and

seawater (29) (Table 1).

Marine-derived Penicillium identification

ITS sequence analysis and morphological compari-

sons were performed on all of the 184 Penicillium

strains, resulting in 36 groups. Representatives of each

species group were selected for benA and RPB2

sequencing, with a total of 96 and 36 strains chosen,

respectively. Comparing results from the three mark-

ers, 27 groups were confidently identified to the

species level (Figs. 2, 3, 4). The species identification

recovered from section-by-section phylogenetic anal-

yses was identical to results from the complete

datasets, so we only show phylogenies from the

complete datasets. The remaining nine groups could
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not be confidently identified because of unclear

relationships in the phylogenies and the absence of

distinguishing morphological characteristics. These

groups were designated Penicillium spp. 1–9. Since

some Penicillium type strains have not been

sequenced, we cannot determine whether these

unidentified taxa are new species or conspecific with

known species with no available DNA data. Addi-

tional examination will be required to identify these

unknown taxa.

Diversity comparisons

Penicillium polonicum (19.6 %) was the dominant

species, followed by Penicillium rubens (11.4 %),

Penicillium chrysogenum (11.4 %), and Penicillium

crustosum (10.9 %) (Table 1). Of the locations sur-

veyed, Jeju had the highest Penicillium diversity (20

species), followed by Wando (11 species), Ilgwang

(10 species), and Geoje (7 species) (Fig. 1). The

remaining three sites, Uljin, Namhae, and Dadaepo,

exhibited extremely low fungal diversity, with only

one or two species isolated from each site (Fig. 1).

The number of species isolated from each substrate

differed, with Penicillium diversity being higher in

soil and macroorganisms (23 species each) compared

with seawater (14 species). Six species were shared

across the three substrates: P. chrysogenum, P.

citrinum, P. crustosum, P. glabrum, P. polonicum,

and P. rubens. Furthermore, unique species were

isolated from each of the substrates—nine from soil,

eight from macroorganisms, and one from seawater

(Table 1). Penicillium citrinum and P. polonicum

were more commonly isolated from soil, whereas P.

antarcticum and P. glabrum were more commonly

isolated from macroorganisms. P. chrysogenum was

commonly isolated from all three substrates.

Enzyme and antifungal activity

All strains were screened for the extracellular enzyme

activity of alginase, endoglucanase, and b-glucosidase

(Tables 2, 3). Twenty-two strains of 11 species showed

alginase activity and 132 strains of 27 species demon-

strated b-glucosidase activity, but no endoglucanase

activity was identified for any strain. Penicillium chrys-

ogenum (strain SFC20140101-M797) showed the stron-

gest alginase activity; its clear zone was approximately

double the size of those formed by the other strains

(Table 3). Penicillium oxalicum (strain SFC20140101-

M839) and Penicillium sp. 5 (strains SFC20140101-

M820, SFC20140101-M847, and SFC20140101-M756)

showed strong b-glucosidase activity, with clear zones

approximately 20 mm in diameter (Table 3).

All strains were screened for antifungal activity

against the plant pathogens C. acutatum and F. oxyspo-

rum (Tables 2, 3; Fig. 5). Among them, 90 strains of 32

Fig. 1 Map showing the location of the sampling sites along the

southern and eastern coasts of Korea. Circles for each site

indicate the number of the Penicillium strains from A soil,

B seawater, and C macroorganism

Fig. 2 Phylogenetic tree for Penicillium and related species

based on ML analysis of the ITS. Bootstrap scores are presented

at the nodes only if[50. The scale bar indicates the number of

nucleotide substitutions per site and the letter T indicates ex-

type strains. Phylogeny has been pruned of distantly-related taxa

to simplify viewing of the results

c
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species exhibited antifungal activity against C. acuta-

tum. Penicillium bialowiezense (strain SFC20140101-

M642), P. citrinum (strains SFC20140101-M492,

SFC20140101-M490, and SFC20140101-M662), Pen-

icillium sp. 1 (strain SFC20140101-M830), and Peni-

cillium sp. 4 (strains SFC20140101-M680 and

SFC20140101-M810) showed relatively strong anti-

fungal activity, with inhibition zones C5 mm (Table 3).

Forty-one strains of 21 species showed antifungal

activity against F. oxysporum. Penicillium citrinum

(strain SFC20140101-M662) and P. freii (strain

SFC20140101-M754) showed the strongest antifungal

activity against F. oxysporum of all strains tested, with

inhibition zones of 4 mm (Table 3).

Discussion

Penicillium diversity

A total of 184 strains of 36 Penicillium species were

identified in this study. Based on data from three

independent molecular markers, 27 species were

highly similar to type strains and were identified as

such. The remaining species differed from the avail-

able type strain data, and may be new species or

known, but unsequenced Penicillium species.

This study increases our knowledge of marine-

derived Penicillium diversity and Korean Penicillium

species in general. The published literature on marine-

derived Penicillium indicates that approximately 30

species have been isolated from marine environments

(Sonjak et al. 2006; Burtseva et al. 2010; Paz et al.

2010; Ding et al. 2011; Singh et al. 2012; Zhang et al.

2012). Only six species are shared between our work

and these previous studies; our study identified 30

additional marine-derived Penicillium species,

approximately doubling the known marine-derived

Penicillium diversity. With respect to Penicillium

diversity in Korea, five species (P. nordicum, P.

rubifaciens, P. rubens, P. virgatum, and P. yarmo-

kense) are new distribution records. These records

increase the known Penicillium diversity in Korea to

approximately 104 species. This discovery of several

new distribution records in Korea and potential new

Penicillium species lead us to believe that marine-

derived fungal diversity is largely underestimated and

is in need of further investigation.

The diversity of species and strains is unequal

across sites within Korea. Sites such as Jeju and

Wando have relatively high diversity, while sites such

as Namhae, Dadaepo, and Uljin have extremely low

diversity (Fig. 1). Our results do not show any clear

pattern of Penicillium diversity in relation to geogra-

phy. However, our data do reveal that the number of

strains and species isolated from soil and macroor-

ganisms were much greater than from seawater

(Table 1). Furthermore, we did not observe clear

substrate specificity for any particular species. In

general, the rare species (1–2 strains) were isolated

from a single substrate, whereas the more common

species tended to be found on multiple substrate types.

Whether the rare species are truly exhibiting substrate

specificity or this pattern is the result of incomplete

sampling will need to be tested with a larger dataset

that compares multiple substrates.

Biological activity of the strains

Members of the genus Penicillium are known for

producing numerous bioactive compounds (Frisvad

et al. 2004). Therefore, we tested the extracellular

enzyme and antifungal activity of the strains isolated

in this study. Extracellular enzymes produced by

Penicillium species can aid in the degradation of

various compounds (Burtseva et al. 2010; Dubrovs-

kaya et al. 2012). In the present study, we screened for

alginase, b-glucosidase, and endoglucanase. Alginase

is important for the degradation of alginate, a

compound commonly found in seaweed, and the

activity of this enzyme has the potential to be useful in

the production of bioenergy and biofunctional oligo-

saccharides (Kim et al. 2010). Alginases are produced

by a variety of sources including marine and soil-

derived bacteria (Doubet and Quatrano 1982) and

marine-derived fungi such as Corollospora interme-

dia, A. cruciatus, and Dendryphiella salina (Schau-

mann and Weide 1990). Presently, there are only two

Penicillium species reported to exhibit alginase

activity: P. canescens (Dubrovskaya et al. 2012) and

P. cyaneum (Burtseva et al. 2010). In our study, 22

strains of 11 species demonstrated alginase activity

(Tables 2 and 3), with P. chrysogenum (strain

Fig. 3 Phylogenetic tree for Penicillium and related species

based on ML analysis of b-tubulin (benA). Bootstrap scores are

presented at the nodes only if[50. The scale bar indicates the

number of nucleotide substitutions per site and the letter T

indicates ex-type strains

b
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SFC20140101-M797) showing especially strong

activity (Table 3).

b-Glucosidase and endoglucanase are important

enzymes that assist in the degradation of cellulose

(Pointing 1999). The importance of cellulase activity

has been recognized as a result of its potential ability to

convert plant biomass to fuels and chemicals (Lynd et al.

1991; Himmel et al. 1999). More than 70 % of the

strains examined in this study (133 strains of 27 species)

showed b-glucosidase activity. The strains showing the

strongest b-glucosidase activity were P. oxalicum

(strain SFC20140101-M839) and Penicillium sp. 5

(strains SFC20140101-M820, SFC20140101-M847,

and SFC20140101-M756; Table 3). Yoon et al.

(2007) reported that 103 of 106 Penicillium species

from terrestrial environments produced strong b-gluco-

sidase activity. Of the 14 species common to the Yoon

et al. study and our present investigation, 11 showed b-

glucosidase activity in both studies. For the remaining

three species, Yoon et al. found b-glucosidase activity

while we did not, thus highlighting a potential difference

between terrestrial and marine-derived strains. Our

study also identified nine species with b-glucosidase

activity that were not studied in (Yoon et al. 2007).

Although several Penicillium species have been known

to produce endoglucanase to degrade cellulose (Wood

et al. 1980; Steiner et al. 1994; Jørgensen et al. 2003;

Adsul et al. 2004; Dutta et al. 2008), we did not detect

endoglucanase activity in our study, despite testing all of

the isolated strains.

Penicillium species are known as potential biological

control agents owing to their antifungal activity (Frisvad

et al. 2004). In our study, more than half the strains

(50.5 %) showed antifungal activity against at least one

of the plant pathogens tested, and 38 strains showed

antifungal activity against both plant pathogens. Of the

species tested in our study, P. citrinum showed

relatively high antifungal activity against the two plant

pathogens, with strain SFC20140101-M662 exhibiting

the strongest activity (Table 3). P. citrinum is com-

monly isolated from marine environments (Paz et al.

Table 2 The number of Penicillium strains showing extra-

cellular enzyme activity and/or in vitro antifungal activity

Species No. of strain(s) No. of positive strains

AA GA AC AF

P. aethiopicum 2 0 0 1 0

P. allii 2 0 2 0 0

P. antarcticum 10 0 9 6 0

P. atramentosum 4 1 0 3 1

P. bialowiezense 2 0 1 1 1

P. brevicompactum 2 0 1 1 1

P. chrysogenum 21 4 20 5 0

P. citrinum 12 3 1 11 11

P. crustosum 20 0 4 12 2

P. daleae 1 0 0 1 1

P. digitatum 3 0 3 1 1

P. expansum 2 1 2 2 1

P. freii 2 0 2 2 2

P. glabrum 11 1 11 6 0

P. italicum 2 0 2 0 0

P. nordicum 3 2 2 3 2

P. oxalicum 1 0 1 0 0

P. polonicum 36 4 36 12 7

P. radicicola 1 0 1 1 1

P. raperi 1 1 1 1 0

P. rubefaciens 2 0 2 1 1

P. rubens 21 2 20 2 0

P. solitum 2 0 0 1 0

P. sumatrense 4 0 1 3 0

P. ulaiense 1 0 1 0 0

P. virgatum 1 0 0 1 1

P. yarmokense 1 0 1 1 1

Penicillium sp. 1 1 1 0 1 1

Penicillium sp. 2 1 0 1 1 0

Penicillium sp. 3 1 0 1 1 1

Penicillium sp. 4 3 0 2 2 2

Penicillium sp. 5 3 2 3 3 1

Penicillium sp. 6 1 0 0 1 1

Penicillium sp. 7 1 0 1 1 0

Penicillium sp. 8 2 0 0 1 1

Penicillium sp. 9 1 0 0 1 0

Total 184 22 132 90 41

AA alginase activity, GA b-glucosidase activity, AC antifungal

activity against C. acutatum (SFC20130816-01), AF antifungal

activity against F. oxysporum (SFC20130816-02)

Fig. 4 Phylogenetic tree for Penicillium and related species

based on ML analysis of RNA polymerase subunit II (RPB2).

Bootstrap scores presented at the nodes only if[50. The scale

bar indicates the number of nucleotide substitutions per site and

the letter T indicates ex-type strains

b
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2010; Zhang et al. 2012; Li and Wang 2009), soil, indoor

air, and food, and is also a plant endophyte (Posada et al.

2007). This species is known to produce a variety of

active compounds, including the mycotoxins citrinin

and citreoviridin (Houbraken et al. 2011), the enzymes

cellulase (Dutta et al. 2007) and xylulase (Wakiyama

et al. 2008), the plant growth regulators citrinolactones

A–C, sclerotinin C, and gibberellin (Kuramata et al.

2007; Khan et al. 2008), and antifungal compounds

against Sclerotsinia minor (Melouk and Akem 1987).

Our study has identified a large pool of Penicillium

species that could potentially be used as biological

control agents—particularly those with strong anti-

fungal activity, such as P. citrinum.

Table 3 Select isolates

showing relatively high

extracellular enzyme

activity and/or in vitro

antifungal activity

Strain numbers are from the

Seoul National University

Fungal Collection (SFC)

AA alginase activity, GA b-

glucosidase activity, AC

antifungal activity against

C. acutatum

(SFC20130816-01), AF

antifungal activity against

F. oxysporum

(SFC20130816-02)

Species Strain Clear zone (mm) Inhibition zone (mm)

AA GA AC AF

P. antarcticum SFC20140101-M835 – 10.0 1.0 –

SFC20140101-M745 – 11.5 1.5 –

SFC20140101-M747 – 11 – –

SFC20140101-M748 – 9.5 – –

P. allii SFC20140101-M742 – 9.0 – –

P. bialowiezense SFC20140101-M642 – – 5.0 3.7

P. brevicompactum SFC20140101-M640 – – 3.0 3.3

P. chrysogenum SFC20140101-M797 5.0 7.0 – –

SFC20140101-M647 2.5 – 1.0 –

SFC20140101-M711 2 7.0 – –

SFC20140101-M831 2.8 6.0 – –

P. citrinum SFC20140101-M656 – – 4.5 3.0

SFC20140101-M481 – – 4.5 2.3

SFC20140101-M492 – – 5.0 2.7

SFC20140101-M493 – – 4.5 2.7

SFC20140101-M483 2.5 – 4.0 3.0

SFC20140101-M490 – – 5.5 2.0

SFC20140101-M662 – – 7.0 4.0

P. freii SFC20140101-M754 – 2.5 4.5 4.0

SFC20140101-M815 – 8.0 4.5 3.0

P. nordicum SFC20140101-M683 2.0 4.0 3.0 –

P. oxalicum SFC20140101-M839 – 20.0 – –

P. polonicum SFC20140101-M816 – 9.5 1.0 –

P. rubens SFC20140101-M682 3.0 6.0 – –

P. virgatum SFC20140101-M659 – – 4.0 3.7

P. yarmokense SFC20140101-M833 – 6.0 3.0 3.7

Penicillium sp. 1 SFC20140101-M830 1.0 – 5.0 3.0

Penicillium sp. 3 SFC20140101-M836 – 8.0 4.0 3.7

Penicillium sp. 4 SFC20140101-M680 – 6.0 6.5 1.7

SFC20140101-M810 – – 5.5 1.0

Penicillium sp. 5 SFC20140101-M820 – 16.0 1.8 –

SFC20140101-M847 1.0 20.0 1.7 –

SFC20140101-M756 1.5 19.5 2.3 –

Penicillium sp. 6 SFC20140101-M744 – – 3.5 3.0
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Conclusions

The number of natural bioactive products from

marine-derived fungi has dramatically increased in

recent years (Blunt et al. 2009). However, our

knowledge of the diversity and functions of Penicil-

lium species isolated from marine habitats is still

limited. Since terrestrial and marine environments are

different in their biotic and abiotic conditions, we

believe it is possible for facultative marine fungi

strains to evolve different bioactive compounds com-

pared to their terrestrial counterparts. In this report, we

have described 36 marine-derived Penicillium species

from Korea, a relatively high proportion of which

showed enzyme and antifungal activity. These find-

ings bolster the idea that marine-derived fungi,

especially species in the genus Penicillium, are a

valuable resource for discovering natural bioactive

compounds. As the marine environment is relatively

understudied compared to terrestrial environments, we

believe that many novel species and bioactive pro-

ducts await discovery.
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