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Charged flanking residues control the efficiency of membrane insertion
of the first transmembrane segment in yeast mitochondrial Mgm1p
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Mgm1p is a nuclearly encoded GTPase important for mitochondrial fusion. Long and short isoforms
of the protein are generated in a unique ‘‘alternative topogenesis’’ process in which the most N-ter-
minal of two hydrophobic segments in the protein is inserted into the inner mitochondrial mem-
brane in about half of the molecules and translocated across the inner membrane in the other
half. In the latter population, the second hydrophobic segment is cleaved by the inner membrane
protease Pcp1p, generating the short isoform. Here, we show that charged residues in the regions
flanking the first segment critically affect the ratio between the two isoforms, providing new insight
into the importance of charged residues in the insertion of proteins into the mitochondrial inner
membrane.
� 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

Mitochondrial inner membrane proteins encoded in the nuclear
genome are imported into the organelle through the TOM complex
in the outer mitochondrial membrane and engage either the TIM23
or the related TIM22 translocons in the inner membrane. Some pro-
teins follow a ‘‘conservative sorting’’ pathway, in which they are
first fully translocated into the matrix and then inserted into the in-
ner membrane from the matrix side [1,2]. Other proteins use a
‘‘stop-transfer’’ mechanism where the transmembrane segment(s)
exit the TIM23 translocon laterally into the lipid bilayer [2].

Mgm1p, a dynamin-like GTPase involved in mitochondrial fu-
sion, morphology, and genome integrity [3–5], is sorted into the in-
ner membrane by the TIM23 complex through a unique process
called alternative topogenesis [6], Fig. 1. Mgm1p has a classical
N-terminal presequence followed by two weakly hydrophobic seg-
ments and a C-terminal globular domain. After cleavage of the pre-
sequence by the matrix processing peptidase MPP (either just
before Asn70 [7] or Ile81 [8]), the first hydrophobic segment is in-
serted into the inner membrane in 30–40% of the molecules. This
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gives rise to a membrane-anchored long isoform of the protein
(l-Mgm1p). In the remaining Mgm1p molecules, the first hydro-
phobic segment translocates through the TIM23 channel into the
matrix whereupon the second hydrophobic segment is cleaved
by the rhomboid-like protease Pcp1p in the inner membrane [8],
releasing a truncated C-terminal part of Mgm1p (s-Mgm1p) to
the intermembrane space (IMS). Both isoforms are required for
proper function [9]. Although an earlier study [6] has shown that
the hydrophobicity of the first transmembrane segment of Mgm1p
influences the balance between the two isoforms, the precise se-
quence determinants that underlie the alternative topogenesis of
Mgm1p are still ill defined.

In a recent study [10] we replaced the first hydrophobic seg-
ment of Mgm1p by a model segment composed of varying num-
bers of Ala and Leu residues, and with different combinations of
positively or negatively charged residues in the immediate flanking
regions. A striking finding in this study was that positively charged
residues (Arg, Lys) increase the efficiency of membrane insertion of
the Ala-Leu segments when present as flanking residues either on
the matrix side or the intermembrane space (IMS) side, while neg-
atively charged residues (Asp, Glu) reduce the insertion efficiency
when flanking the hydrophobic segment on the matrix side but
have little effect when placed on the IMS side.

Here, we have analyzed the effects of naturally occurring
charged residues flanking the inefficiently membrane-inserted first
lsevier B.V. All rights reserved.
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Fig. 1. Alternative topogenesis of Mgm1p in the mitochondrial inner membrane [6]. Mgm1p is imported through the TIM23 translocon. The presequence (black) is cleaved by
the matrix processing peptidase (MPP). The first hydrophobic segment (H1, red) integrates into the membrane in 30–40% of the molecules, resulting in the membrane-
anchored long isoform of Mgm1p (left, l-Mgm1p). In the remaining molecules, the first hydrophobic segment translocates into the matrix, leaving the second hydrophobic
segment (blue) spanning the membrane (right). The second segment is cleaved by the inner membrane protease Pcp1p, giving rise to the short isoform of Mgm1p (s-Mgm1p).
The gel shows Western blots of yeast cells expressing Mgm1p, the GGM ? VVL mutant, and the R78R79 ? AA mutant; the long and short isoforms are indicated. The H1
hydrophobic segment of Mgm1p is shown at the bottom with all residues mutated in the study indicated.

Table 1
Predicted free energy of membrane insertion (DGapp) for transmembrane segments
from single-spanning mitochondrial inner membrane proteins as calculated by the
DG-predictor [19]. The Mgm1p H1 segment is in italics.

YGDB
identifier

Name DGapp

(kcal/
mol)

Predicted TM sequence Ref.

YDR393w She9 �2.0 TWGTFILMGMNIFLFIVLQLLL [16]
YIL111w Cox5b �1.4 AFITKGVFLGLGISFGLFGLVRLLA [16]
YMR302c Yme2 �1.1 TRIAIPVLFALLSIFAVLVF [16]
YDR316w Oms1 �1.0 MTKYMIGAYVIFLIYGLFFTKKLF [16]
YPL132W Cox11 �0.9 RTVAFYFSSVAVLFLGLAYAAVPLY [20,21]
YGR174c Cbp4 �0.5 LWVRWLKVYAIGGAIIGSGFLLFKY [16]
YNL052w Cox5a �0.2 FIAKGVAAGLLFSVGLFAVVRMA [16]
YOR065w Cyt1 �0.0 RLGLKTVIILSSLYLLSIWV [16]
YBR024w Sco2 0.0 RWKATIALLLLSGGTYAYL [16]
YPL063w Tim50 0.4 YANWFYIFSLSALTGTAIYMAR [16]
YBR037c Sco1 0.5 FSTGKAIALFLAVGGALSYFF [16]
YPR024w Yme1 0.5 RWVKWLLVFGILTYSF [16]
YKL195w Mia40 0.5 TAGFIMGILSMAGALYFIA [20,22]
YDL174c Dld1 1.5 WLKYSVIASSATLFGYLFA [16]
YER014w Hem14 1.5 RAKVAVVGGGVSGLCFTYFLSKL [16]
YER058w Pet117 1.7 ITFAASCLITAATVVGVHYV [20]
YOR211c Mgm1

H1
2.0 IIRLPIYVGGGMAAAGSYIAYKM [6]
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hydrophobic segment of Mgm1p. The results are broadly consis-
tent with the model sequence studies and show that charged res-
idues on both sides of the transmembrane segment can serve to
modulate the membrane-insertion efficiency over a wide range.
We also find that the effect is sequence-position dependent in that
neighboring charged residues do not affect membrane insertion to
the same extent.

2. Materials and methods

2.1. Plasmid construction and yeast strains

Mutations of the flanking charged residues of the Mgm1p H1
segment were prepared by overlap PCR [11] using plasmid
pHP84MGM1HA [10] as a template for the reaction. All plasmids
carrying a mutation in the MGM1 gene were constructed by homol-
ogous recombination [12] using a PCR amplified MGM1 fragment
and a Sma I digested pJK110 [10] with Dmgm1a or a strains (MATa
or a his3D 1; leu2D0; ura3D0; mgm1::kanMX4) [13]. Plasmids were
isolated from yeast transformants and the correct sequences were
confirmed by DNA sequencing. Correct constructs were then re-
transformed into W303-1a (MAT a, ade2, can1, his3, leu2, trp1,
ura3), selected on -Leu plates, and transformants were subjected
to further analysis.

2.2. Western blot analysis

Yeast transformants carrying various mgm1HA mutants were
grown overnight in 5 ml of -Leu medium at 30 �C. Whole-cell ly-
sates were prepared as described [14]. Western blotting was car-
ried out with an anti-HA antibody, blots were imaged on a Fuji
LAS-3000 phosphoimager, and bands were quantified using the
Image Gauge V 3.45 software. Selected mgm1HA mutants were also
analysed in the temperature-sensitive strain pam16-3 and in the
PAM16 isogenic wild-type strain [15].

2.3. Calculation of DGapp

Membrane integration of each H-segment was quantified from
Western blots by measuring relative amounts of l-Mgm1p and
s-Mgm1p isoforms. The relative amounts of the two isoforms were
used to calculate an apparent equilibrium constant between the
membrane integrated and non-integrated forms: Kapp = fl/fs, where
fl is the fraction of membrane-integrated and fs the fraction of
membrane non-integrated isoforms. Finally, the membrane-inser-
tion efficiency was expressed as an apparent free energy difference
between the non-inserted and inserted states, DGapp = �RT ln Kapp.

3. Results and discussion

The hydrophobicity of the inefficiently inserted N-terminal
hydrophobic segment (H1) in Mgm1p is weak compared to typical
transmembrane segments in single-spanning proteins from the
mitochondrial inner membrane, Table 1. Previous studies
[10,16,17] have shown that the presence of charged residues in
the neighborhood of a transmembrane domain can affect mem-
brane integration in the mitochondrial inner membrane. Consis-
tent with this, statistical analysis on the distribution of charged
residues flanking the transmembrane domains of mitochondrial
inner membrane proteins that follow the ‘stop-transfer’ pathway
has shown that positively charged Lys and Arg residues are abun-
dant on both sides of the TM segments, whereas negatively
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charged residues seem to be under-represented on the matrix side
[10]. Since the Mgm1p H1 segment is only inefficiently inserted
into the inner membrane, we suspected that its membrane integra-
tion may be particularly sensitive to mutations in its charged flank-
ing regions. We therefore replaced charged residues found in the
N- and C-terminal flanking regions of the H1 segment by Ala and
measured how the ratio of the l-Mgm1p and s-Mgm1p isoforms
was affected.

First, we investigated the effects of N-terminal, matrix-facing
charged flanking residues of the Mgm1p H1 segment on its mem-
brane insertion. As seen in Fig. 2A (see Supplementary Fig. S1 for
Western blots), mutation of the positively charged residue Arg at
position 79 (R79), but not at position 78 (R78), to Ala significantly
increased the apparent free energy of membrane insertion (DGapp)
of the H1 segment by 0.5 kcal/mol, meaning reduced membrane
insertion of the H1 segment. A further increase in DGapp was ob-
served when R78 and R79 were simultaneously mutated to AA,
and when combined with a third H83 to A mutation. Changing
R78 to D also led to a significant decrease in the membrane inser-
tion of the H1 segment, while replacing R78R79 with KK did not lead
to a significant change in insertion, indicating that it is the positive
charge on R78 and R79 that is critical. The simultaneous mutation of
K86, K90, and R93 in the N-terminal flanking region to AAG also led
to a significant increase in DGapp, whereas the individual mutations
had little effect.
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Fig. 2. Apparent free energy of membrane insertion (DGapp) of the H1 segment in differe
(B) Mutations in the C-terminal IMS-facing flanking region. Averages from at least three i
differences between Mgm1p wild type (wt) and mutants are indicated by ⁄⁄⁄(two-tailed
As shown before [6], increasing the hydrophobicity of H1 leads
to a significant decrease in DGapp (mutation GGM ? VVL; under-
lined in Fig. 1), but again membrane insertion of this mutant is crit-
ically dependent on flanking charged residues as changing R78 and
R79 to Ala increases DGapp from �0.7 to 1.2 kcal/mol.

It has been suggested that R78 and R79 could be part of the MPP
consensus cleavage site [8], but more recent work has identified a
MPP cleavage site at Asn70 [7]. We have not investigated this fur-
ther, but since we did not detect any band corresponding to the
presequence-containing precursor form of Mgm1p in our Western
blot analysis we assume that single or double mutations of R78 and
R79 do not influence presequence recognition and cleavage by MPP.

To study the roles of charged residues in the C-terminal, IMS-
facing flanking region of H1, we systematically mutated charged
residues within 10 residues from the end of H1 segment to Ala,
Fig. 2B. Individually mutating K112, E114, or E115 to A did not give
rise to a statistically significant change in DGapp. However, when
E114 and E115 were simultaneously mutated to A (with or without
including the K112 ? A mutation), DGapp was significantly in-
creased. Mutation of three charged residues further away from
the H1 segment, K121D122K123 to A did not increase DGapp. Unex-
pectedly, we observed a nearly complete absence of membrane
insertion of H1 segment when E114 and E115 were simultaneously
mutated to K. Schäfer et al. [18] have recently investigated the
importance of charged residues flanking the H2 segment in
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Fig. 3. Western blot analysis of Mgm1p mutants expressed in the pam16-3 strain and in the isogenic PAM16 wildtype (wt) strain. Lanes within the same panel are from the
same gel.
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Mgm1p for Pcp1 recognition and cleavage during import. The res-
idues we have mutated are 40 to 80 amino acids upstream of the
Pcp1 cleavage site and the fact that we see either no change in
the ratio between l-Mgm1p and s-Mgm1p or an increase in the rel-
ative amount of s-Mgm1p show that mutations around the H1 seg-
ment do not impair the intrinsic ability of the H2 segment to be
recognized and cleaved by Pcp1.

The formation of the s-Mgm1p isoform depends on the so-
called import motor in the matrix [5]. Since many of the mutations
around the H1 segment described above give rise to an increase in
s-Mgm1p and hence more efficient translocation of the H1 seg-
ment across the inner membrane, we decided to also study their
behavior in pam16-3 cells where the import motor is not fully func-
tional [15]. As expected, very little s-Mgm1p was seen in pam16-3
cells expressing wildtype Mgm1p, Fig. 3. Low levels of s-Mgm1p
were also evident for the E114E115 ? AA and E114E115 ? KK muta-
tions. Interestingly, however, when R79 or R78 together with R79

were mutated to Ala (with or without the additional GGM ? VVL
change in H1), the pam16-3 mutation had a much smaller effect
on the amount of s-Mgm1p, suggesting that the R79 ? A mutation
may reduce the membrane-insertion efficiency of the H1 segment
to such an extent that even a functionally impaired import motor
can pull it across the inner membrane.

In summary, the alternative topogenesis of Mgm1p is critically
dependent not only on the hydrophobicity of the H1 segment, but
also on flanking charged residues. As suggested by our previous
study with model transmembrane segments [10], mutations of
positively charged residues to Ala or Glu in the N-terminal, ma-
trix-facing flanking region reduce membrane insertion (increased
DGapp), but not all residues contribute equally. In particular, R79

has a much stronger effect than R78, which is only one residue
further away from the end of the H1 segment. Replacing R78

and R79 by lysines has no effect on membrane insertion, but
replacing R78 with a negatively charged Asp reduces insertion. It
is also noteworthy that the R78R79 ? AA mutation increases DGapp

by as much as 1.7 kcal/mol for an H1 segment of increased hydro-
phobicity (the GGM ? VVL mutant). These results suggest that
the two positively charged residues at positions 78 and 79 are
critical determinants for the balanced production of the two
Mgm1p isoforms. Further, the results show that the effect of
the R78R79 ? AA mutation overrides the effect of increased hydro-
phobicity of the H1 segment.

In the C-terminal, IMS-facing flanking region, the two nega-
tively charged residues E114 and E115 seem particularly important
for membrane insertion of the H1 segment. When these two resi-
dues were simultaneously mutated to A, DGapp increased by
0.4 kcal/mol, and when mutated to Lys the effect was even stronger
and almost no membrane-anchored, long isoform of Mgm1p was
detected. In our previous study [10] we found that positively
charged flanking residues promote membrane insertion of model
hydrophobic segments when placed either on the matrix or IMS
side of the inner membrane, however replacement of E114E115 in
the C-terminal IMS-facing flanking region of the H1 segment by
KK completely inhibits membrane insertion of the H1 segment
and promotes translocation into the matrix. Further studies will
be required to resolve these conflicting observations.

We conclude that flanking charged residues can have a major
effect on the insertion of transmembrane segments into the mito-
chondrial inner membrane. However, in the context of the Mgm1p
H1 segment the effects are not always additive, but can depend on
the precise location of the residue in the flanking segment. Among
the charged residues on the N-terminal, matrix-facing side of the
Mgm1p H1 segment the R78R79 pair shows the most significant
influence on membrane insertion, whereas at the C-terminal,
IMS-facing side the E114E115 pair is important for proper sorting
of the Mgm1p H1 segment. While the hydrophobicity of the
Mgm1p H1 segment correlates directly with the efficiency of mem-
brane insertion [6,10], our results here point to a more complicated
influence on insertion from the regions flanking the hydrophobic
stretch.
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Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.febslet.2011.03.056.

http://dx.doi.org/10.1016/j.febslet.2011.03.056


1242 M. Österberg et al. / FEBS Letters 585 (2011) 1238–1242
References

[1] Hartl, F.U., Ostermann, J., Guiard, B. and Neupert, W. (1987) Successive
translocation into and out of the mitochondrial matrix: targeting of proteins to
the intermembrane space by a bipartite signal peptide. Cell 51, 1027–1037.

[2] van Loon, A., Brändli, A. and Schatz, G. (1986) The presequences of two
imported mitochondrial proteins contain information for intracellular and
intramitochondrial sorting. Cell 44, 801–812.

[3] Sesaki, H., Southard, S.M., Yaffe, M.P. and Jensen, R.E. (2003) Mgm1p, a
dynamin-related GTPase, is essential for fusion of the mitochondrial outer
membrane. Mol. Biol. Cell 14, 2342–2356.

[4] Sesaki, H. and Jensen, R.E. (2004) Ugo1p links the Fzo1p and Mgm1p GTPases
for mitochondrial fusion. J. Biol. Chem. 279, 28298–28303.

[5] Wong, E.D., Wagner, J.A., Scott, S.V., Okreglak, V., Holewinske, T.J., Cassidy-
Stone, A. and Nunnari, J. (2003) The intramitochondrial dynamin-related
GTPase, Mgm1p, is a component of a protein complex that mediates
mitochondrial fusion. J. Cell Biol. 160, 303–311.

[6] Herlan, M., Bornhovd, C., Hell, K., Neupert, W. and Reichert, A.S. (2004)
Alternative topogenesis of Mgm1 and mitochondrial morphology depend on
ATP and a functional import motor. J. Cell Biol. 165, 167–173.

[7] Vögtle, F.N., Wortelkamp, S., Zahedi, R.P., Becker, D., Leidhold, C., Gevaert, K.,
Kellermann, J., Voos, W., Sickmann, A., Pfanner, N., et al. (2009) Global analysis
of the mitochondrial N-proteome identifies a processing peptidase critical for
protein stability. Cell 139, 428–439.

[8] Herlan, M., Vogel, F., Bornhovd, C., Neupert, W. and Reichert, A.S. (2003)
Processing of Mgm1 by the rhomboid-type protease Pcp1 is required for
maintenance of mitochondrial morphology and of mitochondrial DNA. J. Biol.
Chem. 278, 27781–27788.

[9] Meeusen, S., DeVay, R., Block, J., Cassidy-Stone, A., Wayson, S., McCaffery,
J.M. and Nunnari, J. (2006) Mitochondrial inner-membrane fusion and crista
maintenance requires the dynamin-related GTPase Mgm1. Cell 127, 383–
395.

[10] Calado Botelho, S., Österberg, M., Reichert, A.S., Yamano, K., Björkholm, P.,
Endo, T., von Heijne, G. and Kim, H. (2011) TIM23-mediated insertion of
transmembrane a-helices into the mitochondrial inner membrane. EMBO J.
30, 1003–1011.
[11] Spee, J.H., de Vos, W.M. and Kuipers, O.P. (1993) Efficient random mutagenesis
method with adjustable mutation frequency by use of PCR and dITP. Nucleic
Acids Res. 21, 777–778.

[12] Oldenburg, K.R., Vo, K.T., Michaelis, S. and Paddon, C. (1997) Recombination-
mediated PCR-directed plasmid construction in vivo in yeast. Nucleic Acids
Res. 25, 451–452.

[13] Westermann, B. and Neupert, W. (2000) Mitochondria-targeted green
fluorescent proteins: convenient tools for the study of organelle biogenesis
in Saccharomyces cerevisiae. Yeast 16, 1421–1427.

[14] Kim, H., Österberg, M., Melén, K. and von Heijne, G. (2006) A global topology
map of the Saccharomyces cerevisiae membrane proteome. Proc. Natl Acad. Sci.
USA 103, 11142–11147.

[15] Frazier, A.E., Dudek, J., Guiard, B., Voos, W., Li, Y., Lind, M., Meisinger, C.,
Geissler, A., Sickmann, A., Meyer, H.E., et al. (2004) Pam16 has an essential role
in the mitochondrial protein import motor. Nat. Struct. Mol. Biol. 11, 226–233.

[16] Meier, S., Neupert, W. and Herrmann, J.M. (2005) Proline residues of
transmembrane domains determine the sorting of inner membrane proteins
in mitochondria. J. Cell Biol. 170, 881–888.

[17] Rojo, E.E., Guiard, B., Neupert, W. and Stuart, R.A. (1998) Sorting of D-lactate
dehydrogenase to the inner membrane of mitochondria – analysis of
topogenic signal and energetic requirements. J. Biol. Chem. 273, 8040–8047.

[18] Schäfer, A., Zick, M., Kief, J., Steger, M., Heide, H., Duvezin-Caubet, S., Neupert,
W. and Reichert, A.S. (2010) Intramembrane proteolysis of Mgm1 by the
mitochondrial rhomboid protease is highly promiscuous regarding the
sequence of the cleaved hydrophobic segment. J. Mol. Biol. 401, 182–193.

[19] Hessa, T., Meindl-Beinker, N.M., Bernsel, A., Kim, H., Sato, Y., Lerch-Bader, M.,
Nilsson, I., White, S.H. and von Heijne, G. (2007) Molecular code for
transmembrane-helix recognition by the Sec61 translocon. Nature 450,
1026–1030.

[20] Neupert, W. and Herrmann, J.M. (2007) Translocation of proteins into
mitochondria. Annu. Rev. Biochem. 76, 723–749.

[21] Carr, H.S., Maxfield, A.B., Horng, Y.C. and Winge, D.R. (2005) Functional
analysis of the domains in Cox11. J. Biol. Chem. 280, 22664–22669.

[22] Naoe, M., Ohwa, Y., Ishikawa, D., Ohshima, C., Nishikawa, S., Yamamoto, H. and
Endo, T. (2004) Identification of Tim40 that mediates protein sorting to the
mitochondrial intermembrane space. J. Biol. Chem. 279, 47815–47821.


	Charged flanking residues control the efficiency of membrane insertion of the first transmembrane segment in yeast mitochondrial Mgm1p
	Introduction
	Materials and methods
	Plasmid construction and yeast strains
	Western blot analysis
	Calculation of ΔGapp

	Results and discussion
	Acknowledgements
	Supplementary data
	References




