
Biochemical and Biophysical Research Communications 450 (2014) 1587–1592
Contents lists available at ScienceDirect

Biochemical and Biophysical Research Communications

journal homepage: www.elsevier .com/locate /ybbrc
Live-cell topology assessment of URG7, MRP6102 and SP-C using
glycosylatable green fluorescent protein in mammalian cells
http://dx.doi.org/10.1016/j.bbrc.2014.07.046
0006-291X/� 2014 Elsevier Inc. All rights reserved.

Abbreviations: GFP, green fluorescent protein; EGFP, enhanced green fluorescent
protein; TM, transmembrane; ER, endoplasmic reticulum; FPP, fluorescence prote-
ase protection; URG7, up-regulated gene clone 7; HBV, hepatitis B virus; HCC,
hepatocellular carcinoma; ILD, interstitial lung disease; Endo H, endoglycosidase H;
WT, wild type; DMSO, dimethyl sulfoxide.
⇑ Corresponding author. Address: School of Biological Sciences, Seoul National

University, Building 504-421, Seoul 151-747, South Korea. Fax: +82 2 872 1993.
E-mail address: joy@snu.ac.kr (H. Kim).

1 These authors contributed equally.
Hunsang Lee a,1, Patricia Lara b,1, Angela Ostuni c, Jenny Presto d, Janne Johansson d,e,f, IngMarie Nilsson b,
Hyun Kim a,⇑
a School of Biological Sciences, Seoul National University, Seoul 151-747, South Korea
b Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
c Department of Sciences, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy
d Karolinska Institutet, Dept of Neurobiology, Care Sciences and Society, Novum 5th Floor, 141 86 Stockholm, Sweden
e Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, The Biomedical Centre, 751 23 Uppsala, Sweden
f Institute of Mathematics and Natural Sciences, Tallinn University, Narva mnt 25, 101 20 Tallinn, Estonia

a r t i c l e i n f o a b s t r a c t
Article history:
Received 1 July 2014
Available online 15 July 2014

Keywords:
Endoplasmic reticulum
Membrane protein topology
Protein orientation
GFP
N-linked glycosylation
Experimental tools to determine membrane topology of a protein are rather limited in higher eukaryotic
organisms. Here, we report the use of glycosylatable GFP (gGFP) as a sensitive and versatile membrane
topology reporter in mammalian cells. gGFP selectively loses its fluorescence upon N-linked glycosylation
in the ER lumen. Thus, positive fluorescence signal assigns location of gGFP to the cytosol whereas no
fluorescence signal and a glycosylated status of gGFP map the location of gGFP to the ER lumen. By using
mammalian gGFP, the membrane topology of disease-associated membrane proteins, URG7, MRP6102,
SP-C(Val) and SP-C(Leu) was confirmed. URG7 is partially targeted to the ER, and inserted in Cin form.
MRP6102 and SP-C(Leu/Val) are inserted into the membrane in Cout form. A minor population of untarget-
ed SP-C is removed by proteasome dependent quality control system.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction state needs to be experimentally determined even for those with
Membrane proteins constitute about 30% of all proteins [1].
Membrane proteins function as receptors and channels in various
biological processes, thus are major targets for drugs [2]. Despite
their biological importance, membrane protein structures contrib-
ute only 1% to the solved protein structures [3]. This is due to the
experimental difficulties with overexpression, purification and
crystallization of membrane proteins. In most cases, the first step
towards understanding structure of membrane proteins is the
determination of membrane topology, two-dimensional structural
information with a number of transmembrane (TM) segments and
relative orientations of the loops connecting the TM segments in
the membrane. Membrane topology of proteins in their native
known three-dimensional structure, as their orientation in the cel-
lular membrane cannot be assessed with crystallography. Yet,
there are a limited number of tools available for assaying mem-
brane protein topology in mammalian cells, and the live cell
assessment of membrane topology is rare. Glycosylatable green
fluorescent protein (gGFP) is available to serve such purpose in
yeast [4]. In mammalian cells, fluorescence protease protection
(FPP) assay has been developed to elucidate the membrane protein
topology. FPP is similar to yeast gGFP assay in that it utilizes the
fluorescence pattern to determine the position of a membrane pro-
tein, but it requires an additional protease treatment and in some
cases, membrane permeabilization [5]. Here, we report the devel-
opment and use of gGFP in mammalian cells as a membrane pro-
tein topology reporter. Like yeast gGFP, mammalian gGFP is
fluorescent in cytosol, but upon N-linked glycosylation in the
endoplasmic reticulum (ER) lumen, it becomes non-fluorescent.
Three clinically important membrane proteins, URG7, truncated
MRP6 and lung surfactant protein C (SP-C), were chosen to validate
the assay system.

The up-regulated gene clone 7 (URG7), which encodes for the
protein URG7 is induced by the hepatitis B virus (HBV) x antigen.
This up-regulation is involved in the pathogenesis of chronic
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infection and furthermore, in the development of hepatocellular
carcinoma (HCC) [6,7]. In vitro studies of URG7 support an Nout/
Cin topology [8,9]. The first 74 amino acid residues are identical
to the N-terminal residues of the multidrug-resistance protein 6
(MRP6) [6]. The additional C-terminal 28 residues in the truncated
MRP6 (MRP6102) construct contain a second TM domain, making
the protein to adopt an Nout/Cout topology. The 35 amino acid
SP-C is synthesized as a 197 amino acid precursor, proSP-C and
integrated in the ER membrane as a type II membrane protein
[10]. SP-C functions together with phospholipids to lower the alve-
olar surface tension in the lungs, thus preventing the lungs from
collapsing. The TM domain of SP-C contains mostly valine residues,
which can be converted into a b-strand conformation and further
to amyloid fibrils in patients with interstitial lung disease (ILD)
having mutations in the proSP-C gene [11]. Interestingly, the sub-
stitution of valines to leucines abolishes aggregation completely
[12,13].

By taking advantage of gGFP’s selective loss of fluorescence
upon N-linked glycosylation in the ER lumen, the membrane topol-
ogy of URG7, MRP6102, SP-C(Leu/Val) was confirmed in vivo.
MRP6102 and SP-C(Leu/Val) are inserted into the membrane with
their C-terminus translocated to the ER lumen. A minor population
of SP-C(Leu/Val) was untargeted and removed by proteasome
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Fig. 1. Glycosylatable GFP for mammalian cells. (A) The structure of EGFP (PDB 2Y
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with Ys. (C) Fluorescence microscopy of HEK-293T cells expressing EGFP(WT), EGF
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dependent quality control system. URG7 is partially targeted to
the ER, and the targeted URG7 is inserted with its N-terminus in
the ER lumen.

2. Materials and methods

2.1. Plasmid construction

pEGFP-N1 plasmid (Clontech) was a template to construct SP-
EGFP(WT), EGFP(E173T), SP-EGFP(E173T), EGFP(N147T/E173T) or
SP-EGFP(N147T/E173T) using a site-directed mutagenesis kit
(Toyobo) following the manufacturer’s protocol. For the ER target-
ing and retention, a signal peptide of yeast invertase, MLLQAF
LFLLAGFAAKISAS, was added at the N-terminus and the ER reten-
tion signal, KDEL at the C-terminus of EGFP variants. For construc-
tion of plasmids encoding gGFP fusion proteins, gGFP was
amplified from pEGFP-N1 encoding EGFP(N147T/E173T) and were
tagged to the C-terminus of LepH3 proteins, URG7, MRP6102, SP-
C(Leu) and SP-C(Val) by overlap PCR. The stitched PCR products
were cloned into pcDNA3.1 (Invitrogen) by a standard cloning pro-
cedure with restriction enzymes and ligases (Taraka). In order to
introduce the N5 glycosylation acceptor site in the SP-C sequence,
MDVGSKEVLM was substituted to MDVGNKTVLM with the Asn of
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the sequence Asn-Lys-Thr at position 5. Site-specific mutagenesis
was performed using the QuikChange™ Site-Directed Mutagenesis
Kit (Stratagene) and the mutants were confirmed by sequencing at
Eurofins MWG Operon.

2.2. Mammalian cell culture and transfection

HeLa or HEK-293T cells were grown in medium (10% FBS in
DMEM with antibiotics) at 37 �C with 5% CO2. Cells were tran-
siently transfected with plasmids encoding either gGFP or gGFP
fusion constructs using Attractene (Qiagen) following the manu-
facturer’s protocol.

2.3. Protein preparation and Western blot analysis

Lysates of HEK-293T expressing either gGFPs or gGFP fusion
proteins were prepared using lysis buffer (1% NP-40 in 1� PBS with
Protease Inhibitors). Endoglycosidase H (Endo H) treatment
(Roche), SDS–PAGE and Western blot analysis were performed as
described previously [4]. HRP conjugated GFP antibody (Rockland)
was used to detect GFP and GFP fusion proteins (1:5000).

2.4. Fluorescence microscopy

Transiently transfected cells were assessed under JuLi fluores-
cence cell imager (Digital Bio) for fluorescence measurement.
Where indicated, cells were cultured on a cover glass for direct
imaging on Axioimager A1.

2.5. FACS analysis

Transiently transfected cells were washed with 1� PBS and col-
lected by trypsin–EDTA treatment. The collected cells were
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resuspended in 3.7% formaldehyde in 1� PBS and analyzed with
FACS Canto (BD).

2.6. Proteasome inhibition assay

Six hours after transfection, the proteasome inhibitor, MG132
was added to the cells together with fresh media at a concentration
of 10 lM in DMSO. Equal amount of DMSO was added to control
populations.

3. Results

3.1. Development of glycosylatable green fluorescent protein (gGFP) in
mammalian cells

To test the applicability of yeast gGFP in mammalian cells, yeast
gGFP was cloned into pcDNA3.1 and transfected into HeLa cells.
However, yeast gGFP was not expressed in HeLa cells, which may
have been due to the differences in codon usage between yeast
and mammalian systems.

To overcome problems in gGFP expression in HeLa cells, pEGFP-
N1 plasmid encoding mammalian EGFP was used to introduce a
glycosylation site by engineering an E173T substitution (equiva-
lent to E172T in yEGFP, which was reported to abolish fluorescence
upon N-linked glycosylation) (Fig. 1A) [4]. Mammalian EGFP
contains an additional valine residue at position 2 compared to
yEGFP, thus the residue number is one higher for mammalian
EGFP. To check whether the engineered N-linked glycosylation site
(N171- I172-T173) is utilized in the ER lumen, the cleavable signal
peptide (SP) of secreted yeast invertase was fused to EGFP variants
at their N-terminus for translocation into the ER lumen. Previously,
SP of yeast invertase was shown to be functional in mammalian
cells [14]. In addition, the ER retention signal, KDEL sequence,
men
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was added to the C-terminus to prevent a gGFP fusion protein from
being secreted [15] (Fig. 1B). The plasmid encoding EGFP(WT) or
EGFP(E173T) with or without the SP was transfected into HEK-
293T cells and their fluorescence pattern was examined by fluores-
cence microscopy and FACS analysis. Both EGFP(WT) and EGF-
P(E173T) exhibited fluorescence in the cytosol (Fig. 1C and D).
The fluorescence from EGFP(E173T) was more intense compared
to that of the wild type EGFP. SP-EGFP(E173T) fluoresced in the
ER lumen, indicating that the E173T mutation alone did not abolish
fluorescence even though being glycosylated (Fig. 1E).

Recently, another version of glycosylatable GFP was developed
for clinical use [16]. This version of GFP carries an engineered
N-linked glycosylation site at position 145. Once this site is
glycosylated, GFP loses fluorescence in mammalian cells. There-
fore, we prepared EGFP(WT) with two N-linked glycosylation sites,
N145 and N171, by introducing an N147T substitution in EGF-
P(E173T) (Fig. 1A). With two N-linked glycosylation sites in the
EGFP sequence, the size difference between glycosylated and
unglycosylated EGFP would be more prominent, thus enhance
the applicability as a potential membrane topology reporter when
fused to larger membrane proteins. The protein EGFP(N147T/
E173T) was tested for fluorescence and glycosylation patterns.
EGFP(N147T/E173T) exhibited fluorescence in the cytosol whereas
its ER version, SP-EGFP(N147T/E173T), showed no fluorescence
under a fluorescence microscopy (Fig. 1C). FACS analysis offered
more detailed fluorescence measurements of EGFP variants
(Fig. 1D). Mean fluorescence was reduced in SP-EGFP(N147T/
E173T) compared to the cytosolic version but we noticed a signif-
icant difference in maximum fluorescence between the cytosolic
and the ER version of EGFP(N147T/E173T), as well as between
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Denotes triply glycosylated form of MRP6102-gGFP, dd doubly glycosylated form of SP-C
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detectable and non-detectable fluorescent EGFP variants under
fluorescence microscopy (Fig. 1C and D). While mean fluorescence
may differ depending on protein concentration, maximum fluores-
cence may more accurately indicate changes in fluorescence inten-
sity due to N-linked glycosylation, thus more reliable to assess
glycosylation-dependent fluorescence changes of gGFP. Endo H
digestion of whole-cell lysates showed that SP-EGFP(N147T/
E173T) was efficiently glycosylated in the ER lumen (Fig. 1E). As
EGFP(N147T/E173T) exhibits the characteristics of yeast gGFP
whose fluorescence is selectively lost only upon glycosylation in
the ER lumen, we refer to EGFP(N147T/E173T) as a mammalian
gGFP.

3.2. The gGFP is an efficient membrane topology reporter in
mammalian cells

To validate the applicability of mammalian gGFP as a
membrane protein topology reporter, gGFP was fused to a set of
model membrane proteins derived from Escherichia coli Leader
peptidase (Lep) of known membrane topology. The derived Lep
variant (LepH3) contains 3 TM domains, where the last TM domain
is the test segment of varying hydrophobicity made of leucines and
alanines [17]. It has N-linked acceptor at two sites; in loop 2 and in
the C-terminus (Fig. 2A). LepH3 with 3 leucines and 16 alanines in
the test segment (LepH3-Cout) is expected to have its C-terminus
translocated to the ER lumen whereas LepH3 with 19 leucines
(LepH3-Cin) is expected to have its test segment inserted into the
membrane, thereby leaving its C-terminus in the cytosol. The gGFP
was fused to the C-terminus of LepH3-Cout and LepH3-Cin, then
expressed in HEK-293T cells. When the fusion proteins were
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expressed in HEK-293T cells, LepH3-Cin-gGFP was fluorescent
whereas LepH3-Cout-gGFP was not (Fig. 2B and C). Endo H digestion
of lysates confirmed that the C-terminus of LepH3-Cin-gGFP
remained in the cytosol whereas that of LepH3-Cout-gGFP was
translocated to the ER lumen (Fig. 2D). In sum, these results dem-
onstrate that mammalian gGFP is a convenient in vivo membrane
topology reporter.

3.3. Assessment of URG7, MRP6102, SP-C(Val) and SP-C(Leu)
membrane topologies with gGFP

Mammalian gGFP was tagged to the C-terminus of URG7,
MRP6102, SP-C(Val) and SP-C(Leu) to assay their orientation in
HEK-293T cells (Fig. 3A). Three out of four test proteins, MRP6102,
SP-C(Val) and SP-C(Leu), exhibited no fluorescence (Fig. 3B and
C). Endo H digestion analysis revealed that the proteins were effi-
ciently glycosylated, thereby assaying the fusion joint (the localiza-
tion of gGFP) to the ER lumen (Fig. 3D). In contrast, URG7 exhibited
fluorescence, suggesting that its C-terminus is located in the
cytosol (Fig. 3B and C). The C-terminus of URG7 can reside in the
cytosol in two different forms, untargeted and membrane inserted
form in an Nout/Cin orientation. Endo H digestion of URG7 lysate
showed that both glycosylated and unglycosylated forms are pres-
ent in vivo (Fig. 3D). Hence, it is concluded that URG7 targeting
in vivo is not efficient, leaving about 50% in the cytosol, but once
targeted, it is oriented with an Nout/Cin orientation.

3.4. SP-C(Val) and SP-C(Leu) topogenesis

In contrast to our gGFP study of SP-C where the protein is
inserted in an Nin/Cout form, the in vitro topology study with micro-
somes revealed that SP-C is embedded in the membrane in two dif-
ferent orientations (unpublished data). To test whether the
discrepancy between the results from two systems arises from
A SP-C(Val)-N5-gGFP

MG132DMSOLysate
Endo H             -           +            -          +            -           + 

SP-C(Leu)-N5-gGFP
MG132DMSOLysate

Endo H             -           +            -          +            -           + 

*

*

Fig. 4. SP-C is inserted into the membrane in Nin/Cout orientation in vivo upon targeting to
C(Leu/Val)-N5-gGFP in the presence or absence of MG132 were subjected to Endo H di
additional glycosylation site at the N-terminus compared to SP-C(Leu/Val)-gGFP used in
form (Nin/Cout) and s a non-glycosylated form (Untargeted). * Denotes an unspecific ban
the proteasome dependent pathway in vivo leaving only the Nin/Cout form in the memb
the presence or absence of the quality control system, HEK-293T
cells were treated with proteasome inhibitor MG132. While the
majority of SP-C was inserted into the membrane in an Nin/Cout

form, the unglycosylated SP-C was also detected in the presence
of MG132 (Fig. 4A). These results suggest that SP-C is either
inserted in two different membrane orientations or some were
not targeted to the membrane, and the cells remove the incorrectly
inserted, Nout/Cin form, or an untargeted form by the proteasome
in vivo. To distinguish these two possibilities, an additional
N-linked glycosylation site was engineered at the N-terminus of
SP-C and the protein was expressed in HEK-293T cells. If the ungly-
cosylated SP-C was incorrectly inserted as Nout/Cin form, with an
N-linked glycosylation site at the N-terminus, it would be glycosyl-
ated. However, unglycosylated product was still detected, thus
suggesting that a small fraction of SP-C is untargeted in vivo and
removed by the proteasome (Fig. 4A and B).

4. Discussion

We have demonstrated that a glycosylatable GFP (gGFP) is suit-
able for assaying membrane protein topologies in mammalian cells
in vivo. The gGFP fused to a C-terminus of a protein is fluorescent
and not glycosylated when located in the cytosol, but glycosylated
upon translocation into the ER lumen and loses its fluorescence.
The distinct fluorescence and glycosylation characteristics of the
gGFP allow an easy live cell assessment of membrane protein
topology. Once membrane proteins are tagged with gGFP, fluores-
cence measurements after transfection and Western blotting allow
unambiguous assessment of the membrane protein topology.

Using gGFP, we have confirmed the topology of URG7, MRP6102,
SP-C(Val) and SP-C(Leu), disease associated proteins in vivo. Inter-
estingly, there was a discrepancy between in vitro and in vivo
topology studies on SP-C. SP-C was inserted with dual topology
in microsomes, but it was inserted only in Nout/Cin form in vivo.
gGFP
Y Y

N

cytosol

ER lumen

B
gGFP

gG
FP

the membrane. (A) Whole-cell lysates prepared from HEK-293T cells expressing SP-
gestion, SDS–PAGE and Western blot analysis. SP-C(Leu/Val)-N5-gGFP contains an
Fig. 3. for detection of proteins in Nout/Cin form. dd Denotes a doubly glycosylated
d. (B) Schematic representation of SP-C biogenesis. Untargeted SP-C is degraded via
rane.
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In sum, a mammalian glycosylatable GFP developed in this
study can be implemented to other model organisms for
membrane topology studies. Further, similar to the proteomics
studies done in E. coli [18] and Saccharomyces cerevisiae [19] this
method can be used for global membrane topology mapping in
mammalian cells.
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