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A short C-terminal tail prevents mis-targeting of hydrophobic
mitochondrial membrane proteins to the ER
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Sdh3/Shh3, a subunit of mitochondrial succinate dehydrogenase, contains transmembrane domains
with a hydrophobicity comparable to that of endoplasmic reticulum (ER) proteins. Here, we show
that a C-terminal reporter fusion to Sdh3/Shh3 results in partial mis-targeting of the protein to
the ER. This mis-targeting is mediated by the signal recognition particle (SRP) and depends on the

length of the C-terminal tail. These results imply that if nuclear-encoded mitochondrial proteins
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contain strongly hydrophobic transmembrane domains and a long C-terminal tail, they have the

potential to be recognized by SRP and mis-targeted to the ER.
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1. Introduction

Eukaryotic cells have evolved subcellular organelles containing
distinct subsets of proteins. The vast majority of these proteins are
translated by cytosolic ribosomes and targeted to the correct
organelles. Protein targeting to the endoplasmic reticulum (ER) is
mediated by N-terminal signal peptides (SPs), while most
mitochondrial proteins have N-terminal mitochondrial targeting
peptides (mTPs). However, many membrane proteins destined to
either compartment lack a typical cleavable SP or mTP, but rather
the transmembrane (TM) domain(s) function as a targeting signal
[1-7].

TM domains of the ER-targeted membrane proteins are generally
more hydrophobic than those of mitochondrially targeted mem-
brane proteins [6,8]. The first hydrophobic TM domain of the ER-tar-
geted membrane proteins is recognized by signal recognition
particle (SRP) and mainly targeted co-translationally, whereas
weakly hydrophobic TM domains of mitochondrial proteins such
as carrier proteins interact with cytosolic chaperones and are
targeted to mitochondria in a post-translational mode [9,10].
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Tail-anchored membrane proteins that are post-translationally
inserted into the ER or the mitochondrial outer membrane follow
a similar pattern in that those with a more hydrophobic C-terminal
TM domain are targeted to the ER whereas those with a less hydro-
phobic TM domain are targeted to mitochondria [11,12]. Thus, cor-
rect targeting of membrane proteins to the ER or to mitochondria
seems to be, at least in part, ensured by differences in the hydropho-
bicity of their respective TM domains. Nevertheless, some cytosolic-
ally translated mitochondrial membrane proteins contain markedly
hydrophobic TM domains, and it is still unknown by which mecha-
nisms such proteins escape recognition by SRP and are correctly
targeted to mitochondria.

Shh3 is a homolog of Sdh3, a subunit of the mitochondrial suc-
cinate dehydrogenase complex [13]. Both proteins contain 3 TM
domains and reside in the mitochondrial inner membrane. In an
earlier study, we found that Shh3 was mis-targeted to the ER when
it has a long reporter domain fused to the C-terminus [14]. The
hydrophobicity of TM1 and TM3 of Shh3 is unusually high, compa-
rable to the hydrophobicity of typical ER signal sequences or TM
domains in ER-targeted membrane proteins. Its homolog Sdh3 also
has markedly hydrophobic TM1 and TM3 domains (Fig. 1A). These
observations led us to speculate that the addition of a large C-ter-
minal fusion domain to Shh3/Sdh3 might trigger recognition of the
TM1/TM3 domains by SRP, resulting in co-translational mis-target-
ing to the ER.
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Fig. 1. Sdh3 and Shh3 can be targeted to the ER as the C-terminal fusion domain lengthens. (A) TM domains of Sdh3 and Shh3 are indicated with free energy of membrane
insertion (AG) [23]. (B) Schematics of Sdh3 and Shh3 fusions. (C) Yeast cells expressing Sdh3 or Shh3 fusion proteins were radiolabeled with S**[Met] and subjected to
immunoprecipitation, prior to Endoglycosidase H (EndoH) digestion and SDS-PAGE analysis. Glycosylated and unglycosylated forms are indicated as black circle and open
circle, respectively. (D) Yeast cells expressing Sdh3-Lep286 fusion protein were pulse labeled and treated as described above. (E) Asdh3 strain expressing Sdh3 or Shh3 fusion
proteins were grown in fermentable medium (glucose) or respiring medium (glycerol).

To test this idea, Shh3 and Sdh3 carrying C-terminal extensions 2. Materials and methods

of varying lengths were expressed in wild type and SRP-defective

yeast strains. Our results show that targeting of Shh3/Sdh3 fusion 2.1. Strains

proteins to the ER indeed depends on the length of the C-terminal

fusion domain and is mediated by SRP. From these results we pre- For protein expression, plasmids were transformed into the
dict that nuclear-encoded mitochondrial membrane proteins con- haploid yeast strain BWY46 (same as W303-o, MATx, ade2, canl,
taining TM segments with the hydrophobicity range for SRP his3, leu2, trp1, ura3) [15] or the isogenic strain BWY500 (MATq,
recognition do not have long C-terminal tails. sec65-1, ade2, canl, his3, leu2, trp1, ura3) [15]. sdh3A (MATx,
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ade2, canl, his3, leu2, trp1, ura3, SDH3::HIS3) was derived from
W303-1 o (MATw, ade2, canl, his3, leu2, trp1, ura3) using the HIS3
deletion cassette as detailed in [16]. Correct integration of HIS3
cassette in the gene locus of SDH3 was confirmed by PCR.

2.2. Plasmid construction

SDH3HASUC2HIS4C was subcloned into pJK90 as described in
[14] and SHH3HASUC2HIS4C in pJK90 was obtained from [14].
These constructs were used as PCR templates to amplify various
truncated versions of SDH3/SHH3 fusions and subcloned into
p424GPDHA [17] by homologous recombination.

The plasmid containing SDH3-Lep286 was constructed by over-
lap PCR [18] using p424SDH3HASUC2HIS4C-55 and p424GPD-HI-5L
[19] as templates and homologous recombination with
p424GPDHA. Constructs p424-SDH3(TM1)-160, p424-SDH3(TM3)-
160, and p424-SDH3(TM1)-Pho8 were generated by site-directed
mutagenesis using p424-SDH3HASUC2-160, p424-SHH3HASUC2-
160, and pPHO8HA [19] respectively. In p424-SDH3(TM1)-160, res-
idues from 143 to 197 were deleted, so that after the TM1, the total
length of the C-terminal tail is 182 (22 residue in Sdh3 plus 160
residues from the fusion domain). In p424-SDH3(TM3)-160, resi-
dues from 100 to 165, containg TM1 and TM2, were deleted; the
total length of the C-terminal tail after TM3 remained 160. For
the construction of p424-SDH3(TM1)-Lep and p424-SHH3(TM1)-
Lep, a Smal cleavage site was first engineered into the TM segment
of Lep in p424GPD-H2 [17]. The TM segments 1 from SDH3 and
SHH3 were amplified by PCR and cloned into Smal-linearized
p424GPD-H2.

Truncated YTA10 were amplified from W303-1« strains by PCR
and were subcloned into pJK90 [14] by yeast homologous recombi-
nation. The correct sequence of all plasmids was confirmed by DNA
sequencing.

2.3. Pulse-labeling and immunoprecipitation

Pulse labeling experiments were carried out as described in
[19]. For immunoprecipitation, protein G-agarose beads and anti-
HA antibody were used. After overnight incubation and washing,
beads were incubated with SDS-PAGE sample buffer at 60 °C for
15 min. Prior to SDS-PAGE, samples were subjected to Endoglyco-
sidase H (EndoH) digestion with addition of 15 pl protein sample,
10.5 pl Hy0, 3 pl EndoH buffer, 1.5 pul EndoH (Roche) or 1.5 pl
ddH,0 for the mock sample, and incubated for 2 h at 37 °C. Radio-
labelled bands on SDS gels were visualized using a Fuji FLA-3000
phosphoimager and the Image Reader V1.8]/Image Gauge V 3.45
software.

2.4. Western blot analysis

Yeast transformants expressing fusion proteins were grown at
30°C in 5ml -Trp medium overnight. Temperature sensitive
BWY500 cells were grown at 23 °C overnight and shifted to 37 °C
for 4 h. Cells were harvested by centrifugation at 3000xg and
washed with ddH,0. Cell pellets were resuspended with 100 pl
SDS-PAGE sample buffer and heated at 60 °C for 15 min. Yeast cells
carrying Yta10 fusion constructs were grown at 30 °C in -Ura med-
ium up to 1 Aggo unit. Proteins were precipitated by trichloroacetic
acid (TCA) as described in [20]. Prior to SDS-PAGE and Western blot-
ting, samples were subjected to EndoH digestion as described above.

2.5. Growth complementation assay
Cells were grown in selective media containing glucose as car-

bon source overnight. After measuring Aggo, each transformant
was subjected to 8-fold serial dilution, and cells were grown on

fermentable, glucose-containing or non-fermentable, glycerol-con-
taining media at 30 °C for 2 or 4 days, respectively.

2.6. Bioinformatics analysis

All proteins annotated as mitochondrial, mammalian [21] and
baker’s yeast [22] were downloaded. They were homology-reduced
to <30% identity using CD-HIT. From the remaining sequences the
position and hydrophobicity of predicted transmembrane seg-
ments were obtained using the AG prediction server [23]. The pro-
tein structure dataset is composed of all mitochondrial proteins/
chains found in OPM (107 proteins), the energy and membrane re-
gions are the values and regions given in OPM [24]. The yeast data
set is composed of 26 mitochondrial proteins. For protein sequence
alignment of Sdh3 and Shh3 the ClustalW2 program was used [25].

3. Results

3.1. Shh3/Sdh3 fusion proteins with long C-terminal tails are mis-
targeted to the ER

To determine whether the ER targeting of Shh3 (and its homo-
log Sdh3) depends on the length of the C-terminal tail, Shh3 and
Sdh3 constructs with C-terminal extensions of varying lengths
were expressed in the yeast Saccharomyces cerevisiae, and their
subcellular localizations were assessed. The length of the C-termi-
nal tail was adjusted to 55, 100, and 160 residues by shortening the
originally fused topology reporter domain HASuc2His4C [14] from
the C-terminal end. The C-terminal tails contained 2 to 6 N-linked
glycosylation sites, so that the ER targeting could be monitored by
glycosylation (Fig. 1B). Fusion constructs were transformed and ex-
pressed in the S. cerevisiae strain W303-1a. While Sdh3-55 was not
glycosylated, increasing fractions of Sdh3-100 and Sdh3-160 be-
came glycosylated (black circle), indicating that they were at least
partially mis-targeted to the ER (Fig. 1C). A similar pattern was
observed for Shh3 fusions (Fig. 1C). Minor bands detected by
radiolabelling might be inefficient alternative translation products
or proteolysis products of the full-length fusion proteins. To check
whether ER targeting depends on the particular C-terminal fusion
domain used, Sdh3 was also fused to the C-terminal periplasmic
domain of the non-yeast protein Escherichia coli LepB [17]. Sdh3-
Lep286 was also partially glycosylated (Fig. 1D), indicating mis-
targeting to the ER.

3.2. Shh3 and Sdh3 fusion proteins with shorter C-terminal tails are
targeted to mitochondria

Next, we determined whether Sdh3 and Shh3 fusion proteins
are targeted to mitochondria, using a complementation assay.
When the function of the succinate dehydrogenase complex is im-
paired in the sdh3 deletion strain (Asdh3), yeast cells lose the
capacity to respire [13]. Therefore, they cannot grow on medium
containing glycerol, but can survive on glucose-containing fer-
mentable medium. Sdh3 fusion constructs were transformed into
Asdh3 strain, and cells were grown on plates containing glycerol.
Shh3 is a functional homolog of Sdh3 and can rescue the Asdh3
strain [13]. Therefore, an Shh3-fusion protein was also assessed
for functional complementation of the Asdh3 phenotype. Sdh3-
55, Sdh3-100 and Shh3-55 rescued the growth defect of the Asdh3
strain on glycerol medium, suggesting that these fusion proteins
are correctly targeted to mitochondria in sufficient amounts and
associated with other subunits of the succinate dehydrogenase to
form a functional complex (Fig. 1E). The longest Sdh3 fusion pro-
tein (Sdh3-160) failed to rescue the A sdh3 growth defect. This
may be due to its mis-targeting to the ER or additionally, a failure
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to fold or associate with other subunits of the succinate dehydro-
genase complex in spite of mitochondrial targeting.

3.3. Sdh3 and Shh3 fusion proteins are targeted to the ER by SRP

We next assessed whether targeting of the Sdh3-160 and Shh3-
160 fusion proteins to the ER is mediated by SRP. Sdh3-160 and
Shh3-160 constructs were transformed and expressed in both a
temperature-sensitive SRP-defective strain (BWY500) and its iso-
genic wild type strain (BWY46) [15]. While glycosylated product
was observed in the wild type strain, it was not seen in the SRP-
defective strain at the non-permissive temperature (Fig. 2A). These
results suggest that the glycosylated products of Sdh3-160 and
Shh3-160 resulted from the SRP-dependent targeting to the ER.

3.4. TM1 of Shh3 and Sdh3 can function as signal sequences and direct
proteins to the ER

The hydrophobicity of TM1 and TM3 of Sdh3 are comparable to
those of ER signal sequences (Fig. 1A). Thus, to test whether TM1 or
TM3 alone can target Sdh3-160 to the ER, we prepared constructs
that contain only TM1 (Sdh3(TM1)-160) or only TM3 (Sdh3(TM3)-
160). With deletion of TM2-3 for Sdh3(TM1)-160, and TM 1-2 for
Sdh3(TM3)-160 the C-terminal tails contain 182 and 160 residues,
respectively. Since the full-length Sdh3-160, which contains 3 TM
domains, was glycosylated, the protein was inserted with Nj,-Cout
topology; consequently, both TM1 and TM3 have Nj,-C,, Orienta-
tion. Hence, we reasoned that Sdh3(TM1)-160 and Sdh3(TM3)-160
may both attain a single spanning N;,-C,,c membrane topology
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when targeted to the ER, such that the C-terminal reporter would
be accessible for glycosylation. Sdh3(TM1)-160 became partially
glycosylated, suggesting that the TM1 has the capacity to direct
the fusion protein to the ER (Fig. 2B). However, no glycosylated
product of Sdh3(TM3)-160 was detected, indicating that TM3 alone
cannot target the fusion protein to the ER, albeit, we cannot
exclude the possibility that Sdh3(TM3)-160 is inserted into the
ER membrane with Ng,-Ci, orientation, with the C-terminal tail
being located in the cytosol. It has been shown that the first TM
segment in multi-spanning membrane proteins acts as a signal
sequence [26]. Further, recognition by SRP arrests translation and
recruits the ribosome-SRP-nascent chain complex to the ER, with
translation resuming after ER targeting. Therefore, the TM1 of Sdh3
would be more likely the main TM segment responsible for the
SRP-mediated ER-mistargeting.

To further determine whether TM1 of Sdh3 and Shh3 can act as
an ER signal sequence independent of protein context, we replaced
the signal anchor sequence of Pho8 with TM1 of Sdh3, and further
replaced the TM domain of an engineered version of E. coli LepB
[17] with TM1 of Sdh3 and Shh3 (Fig.2C). Pho8 [27] has two natu-
ral glycosylation sites in the C-terminal domain. If the protein is
correctly targeted to the ER, it is inserted in an N;j,-Co, membrane
topology and becomes glycosylated. Endoglycosidase digestion
showed that Sdh3(TM1)-Pho8 was completely glycosylated
(Fig. 2C, black circle), indicating efficient ER targeting. The engi-
neered E. coli Lep construct [17] contains two N-linked glycosyla-
tion sites flanking the TM domain, thus if it is targeted to the ER,
it is glycosylated. The resulting constructs Sdh3(TM1)-Lep and
Shh3(TM1)-Lep were expressed and the glycosylation status was

A Sdh3-160 Shh3-160 , B Sdh3(TM1)  Sdh3(TM3)
BWY46  _BWY500 BWY46 _ _BWY500 -160 -160
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Fig. 2. The TM1 segment of Sdh3 and Shh3 can act as a signal sequence and target the protein to the ER by the SRP dependent translocation. Whole cell lysates of yeast cells
carrying designated constructs were subjected to EndoH digestion and analyzed by SDS-PAGE and Western blotting. Glycosylated and unglycosylated forms are indicated as
black circle and open circle, respectively. (A) Sdh3-160 or Shh3-160 construct was transformed into the wild type (BWY46) or SRP defective (BWY500) yeast strain, and whole
cell lysates were analyzed. (B) Glycosylation status of Sdh3(TM1)-160 and Sdh3(TM3)-160 was assessed. (C) Glycosylation status of Sdh3(TM1)-Pho8 (left) and Sdh3(TM1)-
Lep and Shh3(TM1)-Lep (right) was assessed. An asterisk indicates a cleaved form of the protein as previously detected [17].
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again assessed by Endoglycosidase treatment. Sdh3(TM1)-Lep and
Shh3(TM1)-Lep were mostly glycosylated, indicating that both
proteins were efficiently targeted to the ER. These results demon-
strate that TM1 of Sdh3 and Shh3 can function as signal sequences
that direct cargo proteins to the ER.

3.5. Nuclear-encoded mitochondrial membrane proteins with highly
hydrophobic TM domains have short C-terminal tails

Taken together, our results imply that if a mitochondrial mem-
brane protein contains strongly hydrophobic TM segment(s) and a
long C-terminal tail, it might be partially mis-targeted to the ER. If
there are many such proteins in the eukaryotic cell, proper target-
ing to mitochondria could be severely compromised, thus the cur-
rent mitochondrial proteome may not contain this type of proteins.
We therefore examined the hydrophobicity of TM domains and the
C-terminal lengths of known mitochondrial membrane proteins
from S. cerevisiae (Fig. 3A), as well as all mitochondrial proteins
whose three-dimensional structures are known (Fig. 3B). When
the mitochondrial-encoded proteins are excluded, nuclear-en-
coded mitochondrial membrane proteins that contain sufficiently
hydrophobic TM domains were found to have C-terminal tails of
less than 100 residues (Fig. 3). These data show that the majority
of mitochondrial proteins have moderately hydrophobic TM seg-
ments, but if they contain sufficiently hydrophobic TM segments,
the C-terminal tail length is short.

3.6. Ytal0 is prevented from mis-targeting to the ER by a strong
mitochondrial targeting sequence

Only one protein, Ytal0, a subunit of the m-AAA complex is an
exception that contains very hydrophobic TM domains and a more

than 500 residue-long C-terminal tail (Fig. 3A). To check whether
Yta10 is also partially targeted to the ER, we fused the topology re-
porter domain HASuc2His4C (1143 residues) [14] with 13 N-linked
glycosylation sites after TM1 or TM2 of Ytal0 (Fig. 4A). The two
variants were prepared to assure reporter localization to the lumen
when targeted to the ER, since the first TM segment can theoreti-
cally adopt two different orientations in the membrane. Neither fu-
sion construct was glycosylated, indicating they were not targeted
to the ER (Fig. 4A). We reasoned that this may be due to a strong
mitochondrial targeting sequence at the N-terminus, as Miyazaki
et al. [28] have reported that a strong mitochondrial targeting se-
quence can override an ER targeting signal. When the Yta10 mito-
chondrial targeting sequence (residues 2-60 among the N-terminal
72 residues, predicted by MitoProtll [29]) was deleted, we found
that the majority of the TM1 fusion protein was targeted to the
ER as judged by its glycosylation status (Fig. 4B). These results sug-
gest that in the presence of a strong mitochondrial targeting signal,
proteins may be imported into mitochondria either co-translation-
ally, or very quickly if post-translationally imported.

4. Discussion

The majority of cytosolically translated mitochondrial mem-
brane proteins have significantly less hydrophobic TM domains
compared to ER-targeted membrane proteins. This may be one
way by which the eukaryotic cell can effectively sort membrane
proteins between the ER and mitochondria [8]. Weakly hydropho-
bic TM domains of membrane proteins can be anchored via their
charged flanking residues in the mitochondrial inner membrane
[30].

In the present study, we demonstrate a way for eukaryotic cells
to sort membrane proteins containing more strongly hydrophobic
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Fig. 3. The free energy of membrane insertion (AG) [23] is plotted against the distance to the C-terminus for all transmembrane helices of mitochondrial proteins found in S.

cerevisiae(A) [22] and the OPM database (B) [24]. An arrow indicates Yta10.
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Fig. 4. N-terminally truncated Yta10(TM1) fusion is mis-targeted to the ER. (A) Schematic drawings of Yta10 fusion proteins. Samples prepared by TCA precipitation were
subjected to EndoH digestion and analyzed by SDS-PAGE and Western blotting. (B) Construct A59 Yta10(TM1)-1143 with residues 2-60 deleted was expressed in W303-le,
and analyzed as described in (A). Glycosylated and unglycosylated forms are indicated as filled and open circles, respectively.

TM domains to mitochondria. Such TM domains, if recognized by
SRP, would target the protein for co-translational insertion into
the ER; however, if the C-terminal tail following the TM domain
is short, the translated product will be released from the ribosome
before being recognized by SRP and thus evade being mis-targeted
to the ER. Indeed, we find that when two nuclear-encoded mito-
chondrial membrane proteins, Sdh3 and Shh3, both containing suf-
ficiently hydrophobic TM domains for SRP recognition, are
artificially extended, they are mis-targeted to the ER. By bioinfor-
matics analysis, we further show that nearly all nuclear-encoded
mitochondrial membrane proteins, both in S. cerevisiae and in
mammalian cells, have C-terminal tails of lengths less than 100
residues. Recent work has shown that small proteins of less than
120 residues are post-translationally targeted to the ER in mam-
malian cells, indicating that effective SRP recognition may occur
only when the translating sequences are longer than 120 residues
[8,31]. Interestingly, in at least one case (Yta10), mis-targeting to
the ER of a protein with a long C-terminal tail and a strongly hydro-
phobic TM domain is prevented by an efficient N-terminal mito-
chondrial targeting sequence. Finally, our results imply that one
needs to be open to the possibility that C-terminal reporter-protein

fusions to hydrophobic mitochondrial membrane proteins might
trigger mis-targeting to the ER.
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