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The intracellular negatively regulatory mechanism which affects IL-1b-induced MUC8 gene expression
remains unclear. We found that SOCS3 overexpression suppressed IL-1b-induced MUC8 gene expression
in NCI-H292 cells, whereas silencing of SOCS3 restored IL-1b-induced MUC8 gene expression. Sequen-
tially activated ERK1/2, RSK1, and CREB by IL-1b were not affected by SOCS3, indicating that SOCS3
has an independent mechanism of action. Using immunoprecipitaion and nano LC mass analysis, we
found that SOCS3 bound NonO (non-POU-domain containing, octamer-binding domain protein) in the
absence of IL-1b, whereas IL-1b treatment dissociated the direct binding of SOCS3 and NonO. A domi-
nant-negative SOCS3 mutant (Y204F/Y221F) did not bind to NonO. Interestingly, SOCS3 overexpression
dramatically suppressed MUC8 gene expression in cells transfected with wild-type or siRNA of NonO.
Moreover, silencing of SOCS3 dramatically increased NonO-mediated MUC8 gene expression caused by
IL-1b compared to NonO overexpression alone, suggesting that SOCS3 acts as a suppressor by regulating
the action of NonO.

� 2008 Elsevier Inc. All rights reserved.
Understanding the mechanisms that lead to increased mucus
hypersecretion in respiratory diseases is important for developing
new therapeutic strategies. Even though the importance of MUC8
in airway mucosal inflammation has been emphasized in our pre-
vious studies [1–3], the regulation of MUC8 gene expression is still
unclear. Since MUC8 mRNA levels were up-regulated in chronic
sinusitis with polyps [4], expression may be related to mucus
hypersecretion and/or hyperviscosity in airway mucosa. However,
further molecular studies have been limited because only short
partial sequences of the MUC8 gene have been identified.

Suppressor of Cytokine Signaling (SOCS) proteins are members
of negative feedback regulators of the Janus kinase (Jak)/signal
transducer and activator of transcription (STAT), or receptor tyro-
sine kinase pathways [5,6]. To date, eight SOCS subtypes, cyto-
kine-inducible SH2-containing protein (CIS), and SOCS1-7, have
been identified [7] and they consist of a Src homology 2 (SH2) do-
main, SOCS box, and variable N-terminal region. The main physio-
logical function of SOCS is the negative regulation of Jak/STAT-
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dependent IL-6 signaling [8,9]. IL-6-dependent Jak/STAT signaling,
especially SOCS3, inhibits toll-like receptor (TLR) 3 signaling [10],
IL-1 signaling [11,12], and interferon-c signaling [13]. Thus, the
concept of SOCS3 as a suppressor of IL-6-mediated Jak/STAT signal-
ing should be added to its characterized roles as a modulator of
biological functions [12].

The Non-POU-domain containing, octamer-binding domain
protein (NonO) has been known as one of the coregulators of
androgen receptors belonging to the nuclear receptor superfamily
[14]. p54nrb (human) and NonO (mouse) are highly homologous to
the C-terminus splicing factor, praline- and glutamine-rich (SFPQ,
previously known as PSF). These proteins are members of the Dro-
sophila behavior, human splicing (DBHS)-containing protein [15].
DBHS-containing proteins are involved in various nuclear events,
such as DNA replication, transcription, and mRNA processing
[16]. NonO protein forms a protein complex with various proteins
to regulate gene expression in the nucleus [16].

In the present study, we examined an inhibitory effect of SOCS3
on IL-1b-induced MUC8 gene expression and identified the SOCS3-
binding partner for regulating mucus production. We show that
SOCS3 negatively regulated IL-1b-induced MUC8 gene expression.
In addition, SOCS3 regulates the action of NonO to suppress
MUC8 transcriptional activation.
3 with NonO attenuates IL-1b-dependent MUC8 ..., Biochem. Bio-

mailto:jhyoon@yuhs.ac
http://www.sciencedirect.com/science/journal/0006291X
http://www.elsevier.com/locate/ybbrc


2 K.S. Song et al. / Biochemical and Biophysical Research Communications xxx (2008) xxx–xxx

ARTICLE IN PRESS
Materials and methods

Materials. IL-1b and MG132 were purchased from R&D system
(Minneapolis, MN) and Calbiochem (EMD Chemicals Inc.; Darms-
tadt, Germany), respectively. Phospho-specific antibodies were
purchased from Cell Signaling (Beverly, MA), SOCS3 and NonO
antibodies were from Santa Cruz Biotechnology (Santa Cruz, CA),
and Upstate (Lake Placid, NY), respectively. All siRNAs were syn-
thesized by Bioneer (Daejeon, Korea) [GUUUACAAUCUGCCU-
CAAU(dTdT) for SOCS3, GUCCAACGAACUGCUGGAA(dTdT) for
NonO, and CCUACGCCACCAAUUUCGU (dTdT) for negative control].

Nano LC. MS/MS analysis was performed on an agilent 1100 Ser-
ies nano-LC and LTQ-mass spectrometer (Thermo Electron, San
Jose, CA). The capillary column used for LC–MS/MS analysis
(150 � 0.075 mm) was obtained from Proxeon (Odense M, Den-
mark) and slurry packed in house with 5 lm, 100 Å pore size Magic
C18 stationary phase (Michrom Bioresources, Auburn, CA). The
mobile phase A for the LC separation was 0.1% formic acid in deion-
ized water and the mobile phase B was 0.1% formic acid in aceto-
nitrile. The chromatography gradient was set up to give a linear
increase from 5% B to 35% B in 50 min and from 40% B to 60% B
in 20 min and from 60% B to 80% B in 5 min. The flow rate was
maintained at 300 nl/min after splitting. Mass spectra were ac-
quired using data-dependent acquisition with full mass scan
(400–1800 m/z) followed by MS/MS scans. Each MS/MS scan ac-
quired was an average of one microscan on the LTQ. The tempera-
ture of the ion transfer tube was controlled at 200 �C and the spray
was 1.5–2.0 kV. The normalized collision energy was set at 35% for
MS/MS. Sequest software was used to identify the peptide se-
quence. For high confidence results, deltaCn P 0.1 and Rsp 6 4
and Xcorr P 1.5 with charge state 1+, Xcorr P 2.0 with charge
state 2+, and Xcorr P 2.5 with charge state 3+, peptide probabil-
ity > 0.1, were used as cutoff for protein identification. Peptides
were allowed to be variably oxidized at methionine residues and
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to be variably carboxyamidomethylated and carboxymethylated
at cystein.

Other methods. Other methods in this study have been described
previously [1,17].

Statistical analysis. The data are presented as the means ± SD of
at least three independent experiments. Where appropriate, statis-
tical differences were assessed by Wilcoxon Mann–Whitney tests.
A p value less than 0.05 was considered statistically significant.

Results

SOCS3 suppressed IL-1b-induced MUC8 gene expression

In our previous studies, IL-1b, a proinflammatory cytokine,
could induce MUC5AC and MUC8 gene expression in both normal
human nasal epithelial (NHNE) cells and NCI-H292 cells [1,17].
Nonetheless, there is little published report regarding the nega-
tively regulatory mechanism which affects IL-1b-induced MUC5AC
and MUC8 gene expression in the airway. Since many cytokine sig-
naling pathways were inhibited by SOCS3 [18], we examined
whether SOCS3 can negatively regulate IL-1b-induced MUC5AC
and MUC8 gene expression. First, to examine if IL-1b can alter
SOCS3 gene expression in NCI-H292 cells, PCR analysis was per-
formed. Cells were treated with various doses of IL-1b for 24 h.
IL-1b induced MUC5AC and MUC8 gene expression in a dose-depen-
dent manner, whereas SOCS3 gene expression was dramatically
suppressed in a dose-dependent manner (Fig. 1A). To determine
the inhibitory effects of SOCS3 in IL-1b-mediated MUC5AC and
MUC8 gene expression, cells were transfected with wild-type
SOCS3 and siRNA-SOCS3. Overexpressed SOCS3 dramatically sup-
pressed IL-1b-induced MUC5AC and MUC8 gene expression,
whereas siRNA-SOCS3 much increased IL-1b-induced MUC8 gene
expression compared to IL-1b treatment alone (Fig. 1B). Interest-
ingly, MUC5AC gene expression was not restored by siRNA-SOCS3.
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These results suggest that IL-1b down-regulates SOCS3 gene
expression and SOCS3 can act as an intracellular suppressor for
MUC8 gene expression during airway mucosal inflammation, but
not for MUC5AC gene expression. Accordingly, we selected the
MUC8 gene as our target gene to study the regulatory effects of
SOCS3 in the present study. Furthermore, in our previous study
[1], we reported that the signal pathway of ERK1/2, RSK1, and CREB
was essential for IL-1b-induced MUC8 gene expression. We won-
dered if SOCS3 could inhibit this pathway. Western blot analysis
was performed with cells transfected with either wild-type SOCS3
or siRNA-SOCS3. For the activation of ERK1/2 MAPK, cells were
treated with IL-1b for 15 min, whereas cells were treated for
30 min to activate RSK1 and CREB. As seen in Fig. 1C, SOCS3 did
not inhibit the phosphorylation of ERK1/2, RSK1, and CREB, indicat-
ing that SOCS3 did not affect the pathway we reported previously
and that SOCS3 has its own pathway to negatively regulate IL-1b-
induced MUC8 gene expression.

IL-1b induced the ubiquitination of SOCS3

SOCS3 is known as a suppressor of cytokine signaling and there-
by plays a crucial role on cytokine-mediated biological phenomena
[12]. Thus, we examined whether IL-1b can mediate the ubiquiti-
nation of SOCS3 to maintain IL-1b signaling. IL-1b significantly in-
creased the ubiquitination of SOCS3 at a very early time point
(5 min after IL-1b treatment) and IL-1b decreased SOCS3 gene
expression (Fig. 2A). In addition, 26S proteosome inhibitor,
MG132 [19], dramatically inhibited the ubiquitination of SOCS3,
thus stabilizing the expression of SOCS3 (Fig. 2B). These results
suggest that IL-1b ubiquinates SOCS3 to play its own potential
roles.

SOCS3 bound to NonO to regulate IL-1-induced MUC8 gene expression

Since SOCS3 is a multi-functional protein, we thought it might
form a protein complex to exert its potential roles. To identify
SOCS3-binding partners in mammalian cells, we immunoprecipi-
tated SOCS3 complex from IL-1b-treated cells. Coomassie Blue
staining detected a unique protein band in the SOCS3-immune
complex that was not present in IL-1b-treated immunoprecipita-
tions (Fig. 3A). The SOCS3-specific band was analyzed by LC mass
spectrometry and it was identified as NonO protein (Fig. 3B). To
validate the association of endogenous SOCS3 with NonO, immu-
noprecipitation of the lysates showed that SOCS3 bound to NonO
Please cite this article in press as: K. S. Song et al., Interaction of SOCS
phys. Res. Commun. (2008), doi:10.1016/j.bbrc.2008.10.084
without IL-1b treatment, whereas this protein complex was disso-
ciated by IL-1b treatment (Fig. 3C). To further characterize this pro-
tein complex, dominant-negative mutant SOCS3 Y204F/Y221F
construct was employed. Tyr204 and Tyr221 of SOCS3 are located
in the conserved SOCS box [20]. Association of SOCS3 and NonO
was not detectable due to mutant SOCS3 (Fig. 3D). These results
are noteworthy because there was no report on the interaction be-
tween SOCS3 and NonO in NCI-H292 cells. These results suggest
that SOCS3 interacts selectively with NonO and SOCS3 box is
essential for the interaction with NonO. Interestingly, this complex
is disrupted by IL-1b signaling.

SOCS3 suppressed the transcriptional transactivation of NonO

Next, NonO has been known as a multiphosphorylated protein
to exert a variety of nuclear processing [21]. Thus, we performed
immunoprecipitation assay with anti-phospho-Tyr antibody. As
seen in Fig. 4A, the phosphorylation of NonO by IL-1b was maxi-
mally activated at 60 min and then decreased at 120 min. In addi-
tion, we asked if SOCS3 may play a role in regulating the function
of NonO. We used with wild-type and siRNA constructs of SOCS3
and NonO. Interestingly, overexpressed NonO drastically increased
IL-1b-induced MUC8 gene expression. Moreover, silencing of NonO
had no affect MUC8 gene expression, indicating that NonO has a
transcriptional transactivation activity. In addition, cotransfection
with both wild-type SOCS3 and NonO constructs suppressed IL-
1b-induced MUC8 gene expression, whereas cotransfection with
siRNA-SOCS3 and wild-type NonO constructs increased it. In con-
trast, cotransfection with SOCS3 and either wild-type or siRNA-
NonO constructs suppressed IL-1b-induced MUC8 gene expression.
However, cotransfection with both siRNA-SOCS3 and siRNA-NonO
constructs did not affect IL-1b-induced MUC8 gene expression
(Fig. 4B). These findings suggest that SOCS3 leads to enhanced
recruitment of NonO by SOCS box to suppress MUC8 transcrip-
tional activation.

Discussion

We reported previously that IL-1b and PGE2 could induce MUC8
gene expression in human airway epithelial cells [1,2]. Apart from
these reports, there is little published data regarding the signal
pathway for stimulant-induced MUC8 gene expression. An impor-
tant reason for this is that the promoter and cDNA sequence of
the MUC8 gene have not been fully characterized. Since the mech-
3 with NonO attenuates IL-1b-dependent MUC8 ..., Biochem. Bio-
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anism of its negative regulation is also unknown, determining how
MUC8 gene expression is down-regulated by a suppressor to main-
tain homeostasis should provide additional insights into the phe-
nomena of mucus overproduction during inflammation. Thus, we
initially investigated SOCS3 as a candidate protein for down-regu-
lating SOCS3 expression, because the main function of SOCS3 is the
suppression of cytokine signaling. As Karlsen et al. reported, SOCS3
prevents IL-1b-mediated toxicity through the inhibition of iNOS- or
the NF-jB-regulated proapoptotic pathway in pancreatic b cells
[13,22]. Accordingly, we thought that SOCS3 may affect cytokine-
induced mucin gene expression in human airway epithelial cells.
To verify this, we investigated the inhibitory effect of SOCS3 on
IL-1b-induced MUC8 gene expression. IL-1b was shown to down-
regulate SOCS3 gene expression (Fig. 1). In contrast to our results,
Yang et al. reported that SOCS3 expression was not altered by IL-
1b in hepatocytes [12]. This discrepancy may be due to differences
in the type of cell line studied. Thus, the question of why SOCS3
expression was decreased after treatment of IL-1b should then be
addressed. It is possible that a regulatory protein activated by IL-
1b accelerates SOCS3 degradation to increase MUC8 gene expres-
Please cite this article in press as: K. S. Song et al., Interaction of SOCS
phys. Res. Commun. (2008), doi:10.1016/j.bbrc.2008.10.084
sion during inflammation. We also showed that overexpressed
SOCS3 has an inhibitory effect on MUC8 gene expression, whereas
silencing of SOCS3 expression impaired the inhibitory action of
SOCS3 on MUC8 gene expression (Fig. 1B), indicating that an
important role of SOCS3 in the airway is the repression of IL-1b-in-
duced MUC8 gene expression in airway epithelial cells. Our find-
ings suggest that SOCS3 acts as an anti-inflammatory protein in
human airway epithelial cells, leading us to examine the mecha-
nism by which SOCS3 inhibited IL-1b-induced MUC8 gene
expression.

In mammalian cells, gene expression is regulated by several dif-
ferent processes at the transcriptional and post-transcriptional lev-
els. Each processing is tightly controlled by a specific mechanism.
Of these, ubiquitination plays critical roles for protein regulation.
Recently, Ehlting et al. reported that cytokine TNF-a signaling
mediated SOCS3 stabilization in RAW 294.7 cells [23]. However,
in the present study, IL-1b signaling accelerated the ubiquitination
of SOCS3 (Fig. 2A). This discrepancy is thought to be due to the dif-
ference in cell types studied. SOCS3 is relatively stable in 293 cells
and mouse epithelial cell lines, whereas it is highly unstable in Ba/
3 with NonO attenuates IL-1b-dependent MUC8 ..., Biochem. Bio-
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F3, Raw, UT-7 and HepG2 cells [12,19]. It is noteworthy that IL-1b
induces the degradation of SOCS3 at very early stage to eliminate
the suppressor of IL-1b signaling and thereby exerts its own cyto-
kine functions. Thus, studies on the ubiquitination of SOCS may be
important for novel drug development strategies to treat cytokine-
mediated respiratory diseases controlled by SOCS3.

Next, we tried to identify the SOCS3-binding partner to investi-
gate how it regulates IL-1b-induced MUC8 gene expression. Using
immunoprecipitation and LC analysis, we identified a new
SOCS3-binding partner, NonO, a known transcription factor [24].
This is reasonable because SOCS3 is localized to the nucleus [25].
However, there is no previous report regarding the interaction be-
tween SOCS3 and NonO in airway epithelial cells. According to our
findings, IL-1b induced the disruption of SOCS3-NonO binding. In
addition, a dominant-negative mutant (Y204F/Y221F) of SOCS
box in SOCS3 did not bind to NonO (Fig. 3C and D). These results
suggest that IL-1b induced dissociation of the interaction of SOCS3
with NonO and, consequently, NonO increased IL-1b-induced
MUC8 gene expression (Fig. 3). Interestingly, SOCS3 overexpression
dramatically suppressed MUC8 gene expression in cells transfected
with wild-type or siRNA-NonO, whereas silencing of SOCS3 dra-
matically increased NonO-mediated MUC8 gene expression caused
by IL-1b compared to NonO overexpression alone. These results
Please cite this article in press as: K. S. Song et al., Interaction of SOCS
phys. Res. Commun. (2008), doi:10.1016/j.bbrc.2008.10.084
suggest that SOCS3 may be a key factor for negative regulation in
the nucleus and may form a ternary complex to control MUC8 gene
expression in an inflammatory environment. Unfortunately, as
mentioned before, full cDNA and promoter sequences of MUC8
gene have not yet been unidentified. In addition, post-translational
modification of NonO has not been fully defined [24]. These rea-
sons make further studies of the mechanism by which MUC8 gene
expression is up/down-regulated by stimulants in the airway diffi-
cult to persue.

Taken together, these findings suggest that IL-1b induces SOCS3
degradation, resulting in increased MUC8 gene expression. The
ability of SOCS3 protein to interact with NonO is an important neg-
ative regulator of IL-1b-induced MUC8 gene expression in the air-
way. This mechanistic study integrates the diverse signaling
pathways involved in regulating MUC8 gene expression.
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