Chapter 14

Glycolysis, Gluconeogenesis, and the Pentose Phosphate Pathway

14.1 Glycolysis

- **14.2 Feeder pathways for Glycolysis**
- 14.3 Fates of Pyruvate under anaerobic conditions : (Fermentation)
- **14.4 Gluconeogenesis**
- 14.5 Pentose phosphate pathway of glucose oxidation

Major pathway of glucose utilization

Glycolysis

Glucose + 2 NAD⁺ + 2 ATP \longrightarrow 2 Pyruvate + 2 NADH + 4 ATP

Importance of phosphorylated intermediates

- 1. The phosphorylated glycolytic intermediates (9) cannot leave the cell. (lack of transporters for phosphorylated sugars in plasma membrane)
- 2. Phosphoryl groups are essential components in enzymatic conservation of metabolic E.
- 3. Binding E resulting from the binding of phosphate groups to the active sites of enzymes lowers the activation E and increases the specificity of the enzymatic reactions. (most glycolytic enzymes require Mg²⁺)

NAD Nicotinamide Adenine Dinucleotide

Three possible catabolic fates of the pyruvate formed

Animal, plant, and many microbial cells under aerobic conditions

 $\Delta G'^{\circ} = -16.7 \text{ kJ/mol}$

 $\Delta G'^{\circ} = 1.7 \text{ kJ/mol}$

Pyran ring

Furan ring

Phosphohexose isomerase reaction

Phosphorylation of F6P to F1,6P

3

 $\Delta G'^{\circ} = -14.2 \text{ kJ/mol}$

Fructose 1,6-bisphosphate

Cleavage of Fructose 1,6-bisphosphate

Class I Aldolase reaction

Interconversion of the Triose Phosphate

5

Fructose 1,6-bisphosphate ¹CH₂-0-P $^{2}C = 0$ НО -3℃-Н H-4C-OH н⊸с́—он ⁶СН₂—О—(Р Derived Derived from from glucose qlucose aldolase carbon carbon -(P) H-C=0CH2-0-4 1 2 5 C = 0H - C - OHс́н₂—о—Ф 3 CH₂OH 6 Dihydroxyacetone Glyceraldehyde 3-phosphate phosphate triose phosphate isomerase

 $\Delta G'^{\circ} = 7.5 \text{ kJ/mol}$

Oxidation of G3P to 1,3-bisphosphoglycerate

 $\Delta G'^{\circ}$ = 6.3 kJ/mol

6

Glyceraldehyde 3-phosphate dehydrogenase reaction

Phosphoryl transfer from 1,3-bisphosphoglycerate

8 Conversion of 3-phosphoglycerate to 2-phosphoglycerate

3-Phosphoglycerate

2-Phosphoglycerate

 $\Delta G'^{\circ}$ = 4.4 kJ/mol

Phosphoglycerate mutase reaction (2 step)

2-Phosphoglycerate

Phosphoenolpyruvate

 $\Delta G'^{\circ}$ =7.5 kJ/mol

10 Phosphoryl transfer from PEP to ADP

Tautomerization of Pyruvate

Tautomerization is not possible in PEP, and thus the products of hydrolysis are stabilized relative to the reactants

The overall balance for glycolysis

The Rate of Glycolysis : ATP consumption, NADH regeration allosteric regulation of glycolytic enzymes (Hexokinase, PFK-1, Pyruvate kinase) Hormone regulation (glucagon, insulin, epinephrin)

Feeder pathways for glycolysis

Glycogen breakdown by glycogen phosphorylase

Fructose breakdown

Conversion of galactose to glucose 1-phosphate

Fates of Pyruvate !! Pyruvate aerobic anaerobic V Fermentation **TCA cycle** NAD+ **ATP ATP**

Lactic acid fermentation

 $\Delta G'^{\circ} = -25.1 \text{ kJ/mol}$

Alcohol fermentation

TPP and its role in pyruvate decarboxylase

Alcohol dehydrogenase reaction

<u>Carbohydrate synthesis</u> from simple precursors

(Gluconeogenesis)

* brain: ~120 g of glucose/day

Opposing pathways of glycolysis and gluconeogenesis

mainly in the liver (mammals)

Synthesis of PEP from pyruvate (Step 1)

Role of biotin in the pyruvate carboxylase reaction

Synthesis of PEP from pyruvate (Step 2)

Glycolysis and Gluconeogenesis are regulated reciprocally (Chpt. 15)

Major pathway of glucose utilization

General scheme of the pentose phosphate pathway (phosphogluconate pathway, hexose monophosphate pathway)

Role of NADPH and glutathione

In nonoxidative phase,

Ribulose 5-phosphate is epimerized to xylulose 5-phosphate

epimer : two sugars that differ only in the configuration around one carbon atom !!

Nonoxidative reactions of the pentose phosphate pathway

Transketolase reaction

Role of NADPH in regulating G6P partitioning between glycolysis and pentose phosphate pathway

