Chpt. 11 Biological Membranes and Transport

Cell membranes

are

crucial to the life of the cell

The plasma membrane encloses the cell, defines its boundaries, and maintains the essential differences between the cytosol and extracellular environment

TABLE 11-1 Major Components of Plasma Membranes in Various Organisms

	components (70 by weight)				
	Protein	Phospholipid	Sterol	Sterol type	Other lipids
Human myelin sheath	30	30	19	Cholesterol	Galactolipids, plasmalogens
Mouse liver	45	27	25	Cholesterol	_
Maize leaf	47	26	7	Sitosterol	Galactolipids
Yeast	52	7	4	Ergosterol	Triacylglycerols, steryl esters
Paramecium (ciliated protist)	56	40	4	Stigmasterol	_
E. coli	75	25	0	_	-

Components (% by weight)

Note: Values do not add up to 100% in every case, because there are components other than protein, phospholipids, and sterol; plants, for example, have high levels of glycolipids.

Lipid composition of the biological membranes

Fluid mosaic model for membrane structure

Amphipathic lipid aggreagates that forn in water

ENERGETICALLY UNFAVORABLE

Lipid bilayer: - self-sealing properties - fluidity

ideal str. for cell memb.

formed by phospholipid bilayer

ENERGETICALLY FAVORABLE

Asymmetric distribution of phospholipids

Motion of membrane lipids

The mixing of plasma memb. proteins on mouse-human hybrid cells (lateral diffusion)

Measuring the rate of lateral diffusion of a membrane proteins

Freeze-fracture technique

1μm

CYTOSOL

EXTRACELLULAR WATER

Restricted motion of the erythrocyte chloride-bicarbonate exchanger

Membrane proteins

perform most of the specific functions of memb. the amounts and types of proteins in a memb. are highly variable

Typical plasma memb.: ~ 50% of its mass Nerve cell axon: less than ~ 25% of memb. mass Mitochondria inner memb.: ~ 75%

Peripheral membrane protein Integral membrane protein Lipid-anchored membrane protein

Membrane proteins associates with the lipid bilayer

Peripheral and integral proteins

Calcium-dependent (negative charged) phospholipid binding protein

* propidium iodide (PI)

Integral membrane proteins

Bacteriorhodopsin (a light-driven proton pump)

Hydropathy plots

Integral proteins mediate cell-cell interactions and adhesion

Membrane fusion is central to many biological processes

Membrane fusion during viral entry into a host cell

Virus triggers endocytosis; becomes enclosed in an endosome.

HA protein in pH 7 form has fusion peptides buried.

HA protein (trimer)

Endosome

HA: hemagglutinin

HA protein in pH 7 form has fusion peptides buried.

Low pH of endosome triggers extension of HA fusion peptides, which insert into endosomal membrane.

Low pH of endosome triggers extension of HA fusion peptides, which insert into endosomal membrane.

HA folds into hairpins, drawing viral and endosomal membranes together.

hairpins

HA folds into hairpins, drawing viral and endosomal membranes together.

hairpins

HA

HA fusion peptide creates local disruption of bilayer, and hemifusion occurs; outer monolayer of virus fuses with inner monolayer of endosome. HA fusion peptide creates local disruption of bilayer, and hemifusion occurs; outer monolayer of virus fuses with inner monolayer of endosome.

Complete fusion allows viral contents to enter cytoplasm.

* Influenza viruse (AI, SI)

H: hemagglutinin (16) N: neuraminidase (9)

The role of SNAREs in guiding vesicular transport

(SNAREs and targeting GTPase, Rabs)

> 20 different SNAREs

COMPARTMENT A

* SNARE: Soluble N-ethylmaleimide-sensitive factor Attachment protein Receptor

v-SNARE and t-SNARE bind to each other, zipping up from the amino termini and drawing the two membranes together.

Zipping causes curvature and lateral tension on bilayers, favoring hemifusion between outer leaflets and causing formation of an energetically unfavorable void space.

Unstable void space

 ∞

XXXXXXXXX

 ∞

Complete fusion creates a fusion pore.

Pore widens; vesicle contents are released outside cell.

