Chapter 16

The Citric Acid Cycle

16.1 Production of Acetyl-CoA (Activated acetate)
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Production of Acetyl-CoA (Activated acetate)

Overall reaction catalyzed by
the pyruvate dehydrogenase (PDH) complex
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Pyruvate dehydrogenase (PDH) complex

(in the mitochondria of eukaryotes and in the cytosol of prokaryotes)

Complex of three enzymes : pyruvate dehydrogenase (E1)
dihydrolipoyl transacetylase (E2)

* requires 5 cofactors (prothetic groups)

Thiamin pyrophosphate (TPP) +«—— thiamine (vit. B1)
Flavin adenine dinucleotide (FAD) «—— riboflavin
Coenzyme A (CoA) +— pantothenate

Nicotinamide adenine dinucleotide (NAD) <«— niacin
Lipoic acid (Lipoate)



Structure of the PDH complex

E1, E3 : 20 ~ 30 molecules

Cryoelectron micrograph of PDH complexes v

isolated f ine ki
isolated from bovine kidney 60 identical copies of E2 form

a pentagonal dodecahedron (core)



Lipoic acid (lipoate) in amide linkage with a Lys residue
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Structure of the PDH complex (E2)

(E2 consists of three types of domains linked by short polypeptide linkers)

Number of lipoyl
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Oxidative decarboxylation of pyruvate
to acetyl-CoA by the PDH complex
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Multienzyme complex help to increase the rate of cell metabolism

Rxn rate : enzyme’s intrinsic speed of action
frequency with which the enzyme collides with its substrates

\—» diffusion-limited rxn (conc.-dependent)

most metabolites in cell : ~ 10° M conc. Multienzyme complex
most enzyme conc. : << [metabolite] Compartmentalization

+24 molecules of

8 trimers of +12 molecules of pyruvate decarboxylase
lipoamide reductase- dihydrolipoyl
transacetylase dehydrogenase

Pyruvate dehydrogenase
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Synthase or Synthetase
catalyze condensation reaction

Synthase . no nucleoside triphosphate (ATP, GTP ...)
1s required as an energy source.

Synthetase : use ATP or another nucleoside triphosphate as a source of
energy for synthetic reaction. (Ligase)

Kinase or Phosphorylase

Kinase : transfer a phosphoryl group from a nucleoside triphosphate
such as ATP to an acceptor molecule.

Phosphorylase : phospholysis is a displacement reaction in which
phosphate 1s the attacking species and becomes covalently
attached at the point of bond breakage. Such reactions are
catalyzed by phosphorylase.



(1) Formation of Citrate

N\ | citrate
S-CoA CH,—COO~ synthase :
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Citrate AG'° = =32.2 kJ/mol



Structure of citrate synthase (homodimeric)
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Citrate synthase (1)
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Citrate synthase Asp375

The thioester linkage in acetyl-CoA activates the methyl
hydrogens, and Asp®’> abstracts a proton from the
methyl group, forming an enolate intermediate.
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The intermediate is stabilized by hydrogen bonding to
and/or protonation by His?”* (full protonation is shown).
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Citrate synthase (2)
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The enol(ate) rearranges to attack the carbonyl carbon of
oxaloacetate, with His?’* positioned to abstract the proton
it had previously donated. His*?? acts as a general acid.
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The resulting condensation generates citroyl-CoA.
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Citrate synthase (3)
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(2) Formation of Isocitrate via cis-Aconitate

Aconitate hydratase
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*at pH 7.4, 25 'C, less than 10% isocitrate



Iron-sulfur center in aconitase

(cytosolic) Aconitase: (1) Aconitase activity
(2) Iron homeostasis (“moonlighting”)
transferrin
transferrin receptor
ferritin



@ Oxidation of Isocitrate to a-ketoglutarate and CO,
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2 different forms: NAD*-dependent (in Mito. matrix)
NADP*-dependent (in Mito. matrix & cytosol)



@ Oxidation of a-ketoglutarate to Succinyl-CoA and CO,
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(5) Conversion of Succinyl-CoA to Succinate

Succinic thiokinase

|n animal cells
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Succinyl-CoA synthetase reaction sybunit

(Mr 42,000)
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(6) Oxidation of Succinate to Fumarate
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@ Hydration of Fumarate to Malate

Fumarate hydratase

Fumarate Carbanion
transition state
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Fumarase : highly stereospecific
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Oxidation of Malate to Oxaloacetate
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Products of one turn of the citric acid cycle

Acetyl-CoA C2

Citrate C6
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TABLE 16-1 Stoichiometry of Coenzyme Reduction and ATP Formation in the Aerobic Oxidation of Glucose via
Glycolysis, the Pyruvate Dehydrogenase Complex Reaction, the Citric Acid Cycle, and Oxidative Phosphorylation

Number of ATP or reduced Number of ATP

Reaction coenzyme directly formed ultimately formed*
Glucose —— glucose 6-phosphate —1 ATP —1
Fructose 6-phosphate — fructose 1,6-bisphosphate —1 ATP =1
2 Glyceraldehyde 3-phosphate — 2 1,3-bisphosphoglycerate 2 NADH 3 or 5t
2 1,3-Bisphosphoglycerate —— 2 3-phosphoglycerate 2 ATP 2
2 Phosphoenolpyruvate —— 2 pyruvate 2 ATP 2

[ 2 Pyruvate — 2 acety-CoA~ | 2 NADH 5
2 Isocitrate —— 2 «-ketoglutarate 2 NADH 5
2 a-Ketoglutarate — 2 succinyl-CoA 2 NADH 5
2 Succinyl-CoA —— 2 succinate 2 ATP (or 2 GTP) 2
2 Succinate — 2 fumarate 2 FADH, 3
2 Malate —— 2 oxaloacetate 2 NADH 5
Total 30-32

*This is calculated as 2.5 ATP per NADH and 1.5 ATP per FADH,,. A negative value indicates consumption.

! This number is either 3 or 5, depending on the mechanism used to shuttle NADH equivalents from the cytosol to the mitochondrial ma-
trix; see Figures 19-27 and 19-28.



Biosynthetic precursors produced by an incomplete
citric acid cycle in anaerobic bacteria
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Role of the citric acid cycle in anabolism
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TABLE 16-2 Anaplerotic Reactions

Reaction Tissue(s)/organism(s)
pyruvate carboxylase . .
Pyruvate + HCO;™ + ATP = Oxaloacetate + ADP + P, Liver, kidney
PEP carboxykinase
Phosphoenolpyruvate + CO, + GDP oxaloacetate + GTP Heart, skeletal muscle
PEP carboxylase
Phosphoenolpyruvate + HCO," — oxaloacetate + P. Higher plants, yeast, bacteria

malic enzyme
A

Pyruvate + HCO," + NAD(P)H

malate + NAD(P)* Widely distributed in eukaryotes
and prokaryotes

* As intermediates of the citric acid cycle are removed to serve
as biosynthetic precursors, they replenished by anaplerotic reactions

The concentration of the citric acid cycle intermediates
remain almost constant



Pyruvate carboxylase reaction
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Biological tethers
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Regulation of

the citric acid CYCle complex | (&) AMP,CoA,NAD"‘,
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The Glyoxylate Cycle

Vertebrates:
cannot convert fatty acids, or the acetate
to carbohydrates

Plants, certain invertebrates, some microorganism:

acetate can serve both as an energy-rich fuel and
as a source of PEP for cabohydrate synthesis

Glyoxylate Cycle



Glyoxysome Mitochondria

enzymes of the glyoxylate cycle
are sequestered in membrane-bounded organells

EM of a germinating cucumber seed



The Glyoxylate Cycle
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The glyoxylate and
citric acid cycles
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Coordinated regulation
of glyoxylate and
citric acid cycles

Acetyl-CoA
intermediates
of citric acid
cycle and
glycolysis,

AMP, ADP s
. Isocitrate

isocitrate

intermediates
of citric acid
cycle and
glycolysis,
AMP, ADP
'y

Y
- \
RN

protein 'y

ki -
® inase @

lyase
isocitrate
dehydrogenase @ phosphatase
—— e —— —_—
b o
Succinate,
glyoxylate o -Ketoglutarate
Glyaspate Citric
cycle acldit icle

P

K—”
“\‘-__— #/
w k4
Oxaloacetate NADH,
FADH;
gluconeogenesis oxidative

Amino acids,
nucleotides

b
Gluco s:-—l ATP

i phosphorylation



