Chapter 16

The Citric Acid Cycle

16.1 Production of Acetyl-CoA (Activated acetate)
16.2 Reaction of the Citric Acid Cycle
16.3 Regulation of the Citric Acid Cycle
16.4 The Glyoxylate Cycle

Catabolism of proteins, fats, and carbohydrates in the three stages of cellular respiration

Hans Krebs, 1900-1981

Production of Acetyl-CoA (Activated acetate)

Overall reaction catalyzed by the pyruvate dehydrogenase (PDH) complex

Coenzyme A (CoA)

Pyruvate dehydrogenase (PDH) complex

(in the mitochondria of eukaryotes and in the cytosol of prokaryotes)

Complex of three enzymes : pyruvate dehydrogenase (E1) dihydrolipoyl transacetylase (E2) dihydrolipoyl dehydrogenase (E3)

* requires 5 cofactors (prothetic groups)

Thiamin pyrophosphate (TPP) Flavin adenine dinucleotide (FAD) *— riboflavin* Coenzyme A (CoA) Nicotinamide adenine dinucleotide (NAD) - niacin Lipoic acid (Lipoate)

- thiamine (vit. B1)
 - - pantothenate

Structure of the PDH complex

Cryoelectron micrograph of PDH complexes isolated from bovine kidney

60 identical copies of **E2** form a pentagonal dodecahedron (core)

Lipoic acid (lipoate) in amide linkage with a Lys residue

Structure of the PDH complex (E2)

(E2 consists of three types of domains linked by short polypeptide linkers)

Oxidative decarboxylation of pyruvate to acetyl-CoA by the PDH complex

Beriberi

Substrate channeling

Multienzyme complex help to increase the rate of cell metabolism

Rxn rate : enzyme's intrinsic speed of action <u>frequency</u> with which the enzyme collides with its substrates *diffusion-limited* rxn (conc.-dependent)

most metabolites in cell : $\sim 10^{-6}$ M conc. most enzyme conc. : << [metabolite] Multienzyme complex Compartmentalization

Pyruvate dehydrogenase

Citric acid cycle Acetyl-CoA $(\mathbf{1})$ *irreversible* Condensation (TCA, Krebs cycle) CH3-C-S-CoA H2O CoA-SH citrate CH2-C00 synthase 0=C-C00 ¢—coo-HO-(2a) 8 ĊH2-CO0 CH2-C00 Dehydration Dehydrogenation Oxaloacetate Citrate **Citric acid** H₂O // malate aconitase coo- dehydrogenase cycle ÇH 2-COO-HO-CH ċ—coo⁻ Malate ĊH₂ cis-Aconitate -000 ċoo⁻ (7) H_2O Hydration fumarase (**2b**) NADH aconitase H₂O Hydration CH2-CO0ç00⁻ H-¢-coo-Fumarate сн FADH2 Isocitrate но —с —н HC (3) isocitrate COO Ċ00' succinate dehydrogenase Oxidative dehydrogenase 6 decarboxylation Dehydrogenation CH2-C00α-ketoglutarate CH2-COO CO2 dehydrogenase succinyl-CoA ĊH₂ complex synthetase CH2-COO ÇH₂ coo $\dot{c} = 0$ α -Ketoglutarate Succinate H_2 ċ00-CoA-SH CoA-SH -S-CoA GTP GDP C02 (ATP) (4) (ADP) Succinyl-CoA + P; (5) Oxidative decarboxylation Substrate-level

phosphorylation

Synthase or Synthetase

catalyze condensation reaction

Synthase : no nucleoside triphosphate (ATP, GTP ...) is required as an energy source.
Synthetase : use ATP or another nucleoside triphosphate as a source of energy for synthetic reaction. (*Ligase*)

Kinase or Phosphorylase

Kinase : transfer a phosphoryl group from a nucleoside triphosphate such as ATP to an acceptor molecule.

Phosphorylase : *phospholysis* is a displacement reaction in which phosphate is the attacking species and becomes covalently attached at the point of bond breakage. Such reactions are catalyzed by phosphorylase.

Structure of citrate synthase (*homodimeric*)

Citrate synthase (1)

The thioester linkage in acetyl-CoA activates the methyl hydrogens, and Asp³⁷⁵ abstracts a proton from the methyl group, forming an enolate intermediate.

The intermediate is stabilized by hydrogen bonding to and/or protonation by His²⁷⁴ (full protonation is shown).

Citrate synthase (2)

The enol(ate) rearranges to attack the carbonyl carbon of oxaloacetate, with His²⁷⁴ positioned to abstract the proton it had previously donated. His³²⁰ acts as a general acid.

Citrate synthase (3)

The thioester is subsequently hydrolyzed, regenerating CoA-SH and producing citrate.

Formation of Isocitrate via cis-Aconitate

Aconitate hydratase

* at pH 7.4, 25 'C, less than 10% isocitrate

Iron-sulfur center in aconitase

(*cytosolic*) Aconitase: (1) Aconitase activity (2) Iron homeostasis ("*moonlighting*") (transferrin transferrin receptor ferritin

) Oxidation of Isocitrate to α -ketoglutarate and CO_2

3

NADP⁺-dependent (in Mito. matrix & cytosol)

Oxidation of \alpha-ketoglutarate to Succinyl-CoA and CO₂

 $\Delta G'^{\circ} = -33.5 \text{ kJ/mol}$

Conversion of Succinyl-CoA to Succinate

Succinic thiokinase

 $\Delta G'^{\circ} = -2.9 \text{ kJ/mol}$

Oxidation of Succinate to Fumarate

6

Strong competitive inhibitor of succinate dehydrogenase (*TCA cycle blocker*)

7) Hydration of Fumarate to Malate

Fumarate hydratase

Fumarase : highly stereospecific

Products of one turn of the citric acid cycle

TABLE 16-1Stoichiometry of Coenzyme Reduction and ATP Formation in the Aerobic Oxidation of Glucose viaGlycolysis, the Pyruvate Dehydrogenase Complex Reaction, the Citric Acid Cycle, and Oxidative Phosphorylation

Reaction	Number of ATP or reduced coenzyme directly formed	Number of ATP ultimately formed*
Glucose \longrightarrow glucose 6-phosphate	-1 ATP	-1
Fructose 6-phosphate \longrightarrow fructose 1,6-bisphosphate	-1 ATP	-1
2 Glyceraldehyde 3-phosphate \longrightarrow 2 1,3-bisphosphoglycerate	2 NADH	3 or 5†
2 1,3-Bisphosphoglycerate \longrightarrow 2 3-phosphoglycerate	2 ATP	-2
2 Phosphoenolpyruvate \longrightarrow 2 pyruvate	2 ATP	-2
2 Pyruvate \longrightarrow 2 acetyl-CoA	-2 NADH	-5
2 Isocitrate \longrightarrow 2 α -ketoglutarate	2 NADH	-5
2 α -Ketoglutarate \longrightarrow 2 succinyl-CoA	2 NADH	-5
2 Succinyl-CoA \longrightarrow 2 succinate	-2 ATP (or 2 GTP)	-2
2 Succinate \longrightarrow 2 fumarate	2 FADH ₂	-3
2 Malate \longrightarrow 2 oxaloacetate	2 NADH	-5
Total	-	30-32

*This is calculated as 2.5 ATP per NADH and 1.5 ATP per FADH₂. A negative value indicates consumption.

⁺ This number is either 3 or 5, depending on the mechanism used to shuttle NADH equivalents from the cytosol to the mitochondrial matrix; see Figures 19–27 and 19–28.

Biosynthetic precursors produced by an incomplete citric acid cycle in <u>anaerobic bacteria</u>

Role of the citric acid cycle in anabolism

TABLE 16-2 Anaplerotic Reactions

Reaction

Tissue(s)/organism(s)

Pyruvate + HCO_3^- + ATP \checkmark		Liver, kidney	
Phosphoenolpyruvate + CO_2 + $GDP \xleftarrow{PEP carboxykinase}$ oxaloacetate + GTP		Heart, skeletal muscle	
Phosphoenolpyruvate + $HCO_3^- \leftarrow PEP carboxy$	── oxaloacetate + P _i	Higher plants, yeast, bacteria	
Pyruvate + HCO_3^- + $NAD(P)H$	malate + NAD(P) ⁺	Widely distributed in eukaryotes and prokaryotes	

* As intermediates of the citric acid cycle are removed to serve as biosynthetic precursors, they replenished by anaplerotic reactions

The concentration of the citric acid cycle intermediates remain almost constant

Pyruvate carboxylase reaction

Biological tethers

The Glyoxylate Cycle

Vertebrates:

cannot convert fatty acids, or the acetate to carbohydrates

Plants, certain invertebrates, some microorganism:

acetate can serve both as an energy-rich fuel and as a source of PEP for cabohydrate synthesis

are sequestered in membrane-bounded organells

EM of a germinating cucumber seed

The Glyoxylate Cycle О CH₃-C-S-CoA Acetyl-CoA 0=C-CO0 citrate ĊH₂-COO synthase Oxaloacetate CH2 - CO0 NADH HO-C-COO malate dehydrogenase CH2-CO0 Citrate NAD⁺ Glyoxylate COO⁻ aconitase cycle HO-CH CH₂ CH2-CO0 Ċ00⁻ CH-CO0 Malate malate но-сн-соо⁻ synthase 0 Isocitrate isocitrate C = 0lyase 0 $\dot{C} = O$ CH₃-C-S-CoA Ĥ Acetyl-CoA Glyoxylate CH2-CO0 Succinate CH2-CO0

The glyoxylate and citric acid cycles

Coordinated regulation of glyoxylate and citric acid cycles

