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Abstract DNp63a is exclusively expressed in stem cells and
progenitor cells of the stratified epithelia. It promotes cell prolif-
eration by antagonizing p53 and related TAp63/TAp73. Here,
we report that specific desumoylation by SUMO protease
SuPr-1 provides a fine-tuning mechanism for DNp63a repressor
activity. We found that disrupting the sumoylation site compro-
mised DNp63a repressor activity profoundly against TAp63c
and TAp73b-mediated transcription activation, but not to p53-
mediated transcription. We further found that SuPr-1 specifi-
cally bound to sumoylated DNp63a and hydrolyzed SUMO.
Consequently, SuPr-1 expression reduced DNp63a repressor
activity to TAp63c and TAp73b, whereas p53-mediated transac-
tivation was unaffected. Collectively, these data suggest that
SuPr-1-mediated DNp63a desumoylation elaborately regulates
epithelial growth.
� 2007 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.

Keywords: DNp63a; SuPr-1; Sumoylation; Desumoylation;
Transcription control
1. Introduction

The p63gene(AIS/KET/CUSP/p40/p51/p73L) encodes two

different transcripts. One transcript encodes TAp63, which is

structurally and functionally similar to p53. DNp63, which

lacks most of the transcription-activating domain of TAp63,

is directed by an internal intronic promoter [1]. In addition,

alternative splicing at the C-terminus generates at least three

splice variants—a, b, and c; the a form is the longest and con-

tains the sterile alpha motif and transcription inhibition do-

main [2,3]. Among the different isotypes, DNp63a is

exclusively expressed in the epidermal stem cells and progeni-

tor cells, and required for epidermal development and for the

maintenance and regeneration of epidermal stem cells and pro-

genitor cells [4–6].

Although first thought that DNp63a mainly acts as a domi-

nant-negative form for p53 and TAp63 in vitro and in vivo, re-

cent findings also suggest that DNp63a retains transcription

activation capacity as well and activates key target genes re-

quired for epidermal morphogenesis [4]. However, DNp63a
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mainly functions as a transcription repressor in epidermal cell

proliferation during zebrafish embryogenesis [5,6]: scheduled

overexpression in zebrafish embryos suggested that DNp63a
antagonizes p53 for epidermal outgrowth. Thus, it appears

that the repressor function of DNp63a is essential, and there-

fore may be conserved, for maintaining epidermal cell prolifer-

ation in vertebrates [6].

DNp63a is a highly modified protein whose ubiquitination,

phosphorylation, sumoylation, have been reported: poly-ubiq-

uitination of DNp63a induces proteasome-mediated degrada-

tion [7] and SUMO modification of K637 residue of TAp63a
(K582 for DNp63a) was reported to decrease transcription

activation function [8–10]. In the case of DNp63a, sumoyla-

tion, as well as neddylation, induced the degradation of the

protein during zebrafish embryogenesis [8].

We were specifically interested in understanding the effect of

sumoylation–desumoylation in regulating DNp63a’s repressor

activity, since it is conserved from fish to humans and is crucial

in the proliferation and survival of epithelial cell [5,6,11,12].

Here, we report that SuPr-1 functions as a specific SUMO pro-

tease for DNp63a, and regulates the repressor activity towards

TAp63c- and TAp73b-mediated transactivation. Our study

suggests that the sumoylation–desumoylation switch provides

a fine-tuning regulatory mechanism for DNp63a-mediated

transcription control.
2. Results

2.1. Confirmation of DNp63a sumoylation at lysine 582

In order to assess the effect of sumoylation that affects

DNp63a repressor function, we substituted five potential

sumoylation consensus motifs with high probability (K494

and K582) and low probability (K139, K259, and K275) lysine

residues with arginine residues using in vitro mutagenesis and

constructed mutant DNp63a expression vectors.

Next, various mutant DNp63a expression constructs tagged

with Myc epitope at the N-termini were cotransfected into

293T cells with GFP-SUMO expression plasmids, then sub-

jected to immunoprecipitation followed by Western analysis.

Wild-type DNp63a and the other mutants were efficiently

sumoylated, whereas K582R mutant or the double mutant

(K582 and K494 substituted to arginine) were not (Fig. 1A).

This confirmed that K582 (K647 for TAp63a) is the sumoyla-

tion site [8–10].

Sumoylation of DNp63a at the K582 site was further con-

firmed by immunoprecipitation and Western blotting with a
blished by Elsevier B.V. All rights reserved.
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Fig. 1. DNp63a is sumoylated at K582. (A) 293T cells transfected with
various Myc-DNp63a expression plasmids with or without GFP-
SUMO-1 were subjected to immunoprecipitation (IP) with anti-Myc
mAb (9E10) and Western blotting (WB) with anti-GFP antibody.
Mono-sumoylation bands are indicated with an arrow. Slow-migrating
forms above the mono-sumoylated band, presumably the result of
polysumoylation, are also detected. The same blot was reprobed with
9E10 for normalization. (B) 293T cells transfected with Myc-DNp63a
(left panel) or ME180 cells without transfection (right panel) were
immunoprecipitated with 4A4 anti-p63 mAb and immunoblotted with
anti-SUMO-1 (GMP-1) mAb. Arrows indicate sumoylated DNp63a
and non-sumoylated forms are marked with asterisks. The same blot
was reprobed with 4A4 for immunoprecipitation control. Immuno-
precipitation with mouse IgG (mIg) was included as a negative control
(right panel). (C) Transcription inhibition domains of zebrafish,
mouse, and human DNp63a are aligned. K582 sumoylation motif
(underlined) and mutations found in human patients with split-hand–
split-foot malformation are also highlighted.
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SUMO-specific antibody. Wild-type DNp63a was efficiently

detected by anti-SUMO antibodies, whereas the K582R mu-

tant remained undetected (Fig. 1B, left panel). We then asked

whether endogenous DNp63a was also sumoylated by employ-

ing ME180 cervical carcinoma cell line that expresses DNp63a.

From immunoprecipitation followed by immunoblotting with

anti-SUMO antibody, we confirmed that endogenous DNp63a
undergoes sumoylation (Fig. 1B, right panel). In addition, a

slower migrating band corresponding to the sumoylated

DNp63a was readily detected for wild-type DNp63a but not

for the K582R mutant (Fig. 1B, bottom panels). These com-

bined results confirmed that DNp63a is sumoylated at K582

in vivo. Notably, K582 resides in the transcription inhibition

domain at the extreme C-terminus [3], which is conserved from

fish to humans (Fig. 1C). Interestingly, mutations associated

with the epidermal syndrome split-hand–split-foot malforma-

tion, Q579X (634 for TAp63) [13] and E584X (639 for

TAp63), lie adjacent to K582 or directly affect K582 sumoyla-

tion [10]. Since DNp63a is responsible for epidermal develop-
ment among different p63 isotypes [4–6], these results imply

that K582 sumoylation in DNp63a may have an essential func-

tion in modulating DNp63a activity in epidermal homeostasis

[10].
2.2. Sumoylation controls transcription repression of DNp63a
In order to explore the outcome of sumoylation on the tran-

scriptional repressor function of DNp63a, we adopted a lucif-

erase reporter assay. In order to assess the transcription

activation by all three p53 family members, we employed a

luciferase reporter construct linked to a putative p53-respon-

sive element (PG13-Luc). All three constructs activated

PG13, with TAp63c to the highest level (70-fold compared

to 10-fold for p53). DNp63a acted as a strong repressor in a

dose-dependent manner, with the effect most profound for

p53, then to TAp73b-mediated transactivation. For similar

repression levels, greater amounts of DNp63a were required

for TAp63c-mediated transcription (Fig. 2A). In comparison,

the repressor activity of sumoylation-defective mutant

K582R was compromised; greatly affecting TAp73b and

TAp63c, but less so to p53. When we compared the repressor

activity of WT or K582R mutant on p53/TAp63/TAp73 target

genes, we confirmed that the endogenous mRNA levels of p21

and Bax were repressed by wild-type but less so by K582R mu-

tant (Fig. 2B), consistent with the reporter analyses (Fig. 2A).

The decreased repressor activity of K582R mutant can result

from changes in protein stability or cellular localization. In or-

der to test whether sumoylation/desumoylation affects nuclear

localization, we performed Western analysis after biochemical

fractionation in U2OS cells transfected with wild-type DNp63a
or K582R encoding plasmids. The result showed that there was

little difference in protein levels or nuclear localization between

wild-type and sumoylation-defective mutant (Fig. 2C).

Next, we examined the DNp63a’s interaction affinity to p53,

TAp63c, and TAp73b. Wild-type and K582R were bound to

all three p53 members. However, there was 2-fold decrease in

binding of K582R to TAp63c, and a slight decrease for

TAp73b, compared to that of the wild-type (Fig. 2D), whereas

the binding ability to p53 between the wild-type and K582R

was not different. These results may account for the difference

between wild-type and K582R in the repressor activity towards

TAp63c-mediated transactivation. As DNp63a interacts with

number of transcription factors [14] (our unpublished data),

sumoylation may provide differential binding platform for

DNp63a.
2.3. SUMO-1 protease SuPr-1 selectively reduces DNp63a
transcriptional repression

Because DNp63a sumoylation is readily detected under nor-

mal culture conditions, we speculated that desumoylation, may

be a controlling step in regulating repressor activity exerted by

DNp63a. Therefore, we asked if the SUMO-1-specific protease

SuPr-1 [15] or SENP-1 [16] would associate with DNp63a. As

shown in Fig. 3A (upper panel), there was a robust interaction

of slow-migrating DNp63a with catalytically inactive SuPr-1

(C466S) [15] but with a weak interaction to catalytically active

SuPr-1. These data suggest that SuPr-1 interacted with sumoy-

lated DNp63a and rapidly hydrolyzed SUMO-1. Desumoyla-

tion was confirmed in that SuPr-1 hydrolyzed SUMO-1 from

DNp63a in a dose-dependent manner (Fig. 3B). In contrast,

the C466S mutant was unable to desumoylate DNp63a
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Fig. 2. Sumoylation modulates transcription repressor activity of DNp63a. (A) BHK21 cells were co-transfected with PG13-luc and pRL-TK to
assess transcription repressor function of DNp63a on p53-, TAp63c-, or TAp73b-mediated transcription. To compare the repressor activities of wild-
type (WT) vs. K582R DNp63a, varying amounts of repressor were employed and examined for their effects. The ratios for transcription activator
(p53, TAp63c, or TAp73b) vs. repressor (DNp63a) were 20:1, 5:1, and 1:1, respectively. The y-axis shows the fold induction of firefly luciferase
activity normalized with renilla luciferase activity from cells transfected with reporter alone. Note that the values of fold induction in y axis for
TAp63c-mediated transcription are higher. Values are averages of duplicate transfections and represent six independent experiments. (B) U2OS cells
were transfected with WT or K582R mutant DNp63a, and real time RT-PCR was performed to check for the transcript levels of p21 and Bax. Levels
were normalized with GAPDH expression and control vector-transfected group. (C) U2OS cells were transfected with wild-type (WT) DNp63a or
K582R. Forty-eight hours post-transfection, cells were harvested and fractionated [23]. T, total cell lysates; CN, cytoplasmic and nuclear soluble
fraction; NS, nuclear soluble fraction; NP, nuclear pellet; Ch, nuclear pellet subjected to DNase digestion. (D) 293T cells cotransfected with Myc-
DNp63a (WT or K582R) and p53, TAp63c, or TAp73b expression plasmids were subjected to immunoprecipitation with anti-Myc mAb and Western
blotting with anti-p53, anti-p63, or anti-p73 mAbs (upper panels). The same blot was reprobed with anti-p63 antibody (4A4) as an
immunoprecipitation control (middle panels). Western blotting with anti-p53, anti-p63, or anti-p73 mAb in total cell lysates (TCL) indicates that
similar amounts of expression plasmids were expressed (lower panels).
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(Fig. 3B). When we tested for SENP1, another SUMO prote-

ase, the result showed that DNp63a did not interact with

SENP1 (Fig. 3A, lower panel). These data suggest that SuPr-

1 serves as a specific SUMO protease for DNp63a and may

regulate its function.

The association of DNp63a and SuPr-1 was corroborated by

indirect immunofluorescence microscopy. DNp63a colocalized

with ectopically expressed SuPr-1; wild-type DNp63a co-local-

ized with the enzymatically inactive SuPr-1, but less so with the

wild-type SuPr-1. Co-localization of sumoylation-defective

mutant K582R with catalytically inactive mutant SuPr-1 was

reduced compared to wild-type DNp63a (Fig. 4).

Does desumoylation, mediated by SuPr-1, influence the

repressor activity of wild-type DNp63a? Indeed, coexpression

of SuPr-1 weakened the repressor activity of wild-type

DNp63a to levels comparable to that of the K582R mutant
to TAp63c- and TAp73b-mediated transactivation (Fig. 5).

Consistent with the result in Fig. 2A, repression of p53-med-

iated transcriptional activation was not influenced by SuPr-1

coexpression (Fig. 5, upper panel). Therefore, SuPr-1 is likely

to be involved in selectively regulating DNp63a repressor

activity to TAp63c or TAp73b. Taken together, these obser-

vations suggest that DNp63a interacts with SuPr-1, and the

ensuing desumoylation regulates the repressor activity of

DNp63a.
3. Discussion

In this study, we found that SuPr-1 specifically desumoylates

DNp63a. Unlike numerous substrate-specific E3 ubiquityl-

ation ligases, only three types of SUMO ligases have been
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described in mammals: PIAS, RanBP2, and Pc2 [17].

Desumoylation, on the other hand, is mediated by SUMO-spe-

cific proteases called SENPs (sentrin-specific protease 1–7 in

mammals) [18]. We found SuPr-1 (the N-terminally truncated

SENP2 isoform), but not SENP1, interacted with DNp63a and

reduced repressor activity toward TAp63c and TAp73b. Inter-

estingly, repression of p53-mediated transcription activation

was not influenced by SuPr-1. These findings suggest that

SuPr-1-mediated desumoylation provides a means to differen-

tially regulate DNp63a repressor activity toward TAp63c/

TAp73b versus p53.

The crosstalk between p53 family members plays a critical

role in making decisions in cell fate. The balance between the

dominant-negative form of p53 family members and transacti-

vating members also controls tumor cell survival [19,20].

Moreover, recent discovery of DN forms of p53 [21] and inter-

play between p63 and p73 isoforms [22] add more complexity

to the p53 network to guarantee the existence of versatile reg-

ulatory mechanisms. Our study suggests that SuPr-1-mediated

desumoylation provides a fine-tuning mechanism that favors

transcription repressor activity of DNp63a towards different

p53 family members.
4. Materials and methods

4.1. Immunoprecipitation and Western blotting
Cells were lysed in NETN buffer (150 mM NaCl, 1 mM EDTA,

20 mM Tris, pH 8.0, 0.5% NP-40) supplied with protease inhibitors
(1 mM PMSF, 1 lg/ml Aprotinin, 2 lg/ml Leupeptin, 1 lg/ml Pepsta-
tin A, 1 lg/ml NaOVa4; Roche, 125 lM NEM; Sigma). Chemilumines-
cence of Western blots was processed under LAS-3000 (Fuji Film,
Japan).

4.2. Reporter assay
All transfections were equalized with the pcDNA3-Myc vector for

an equal DNA quantity and normalized with luciferase activity with
pRL-TK. Luciferase activity was measured 48-h later using the Dual
Luciferase Assay System (Promega, Madison, WI).

4.3. Real-time PCR
The relative levels of BAX and p21 mRNAs were determined by

real-time quantitative PCR with SYBR (Applied Biosystems, Foster
City, CA) and normalized to GAPDH products. Primer sequences
were – p21 forward: AAGACCATGTGGACCTGT, p21 reverse:
GGTAGAAATCTGTCATGCTG, Bax forward: TGACATGTTTT-
CTGACGGCAAC, Bax reverse: GGAGGCTTGAGGAGTCTCAC-
C, GAPDH forward: GAAGGTGAAGGTCGGAGTC, GAPDH
reverse: GAAGATGGTGATGGGATTTC.
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