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Polo-like kinase 1 (Plk1) is central to cell division. Here, we report that Plk1 is critical for mitosis in the
embryonic development of zebrafish. Using a combination of several cell biology tools, including single-cell
live imaging applied to whole embryos, we show that Plk1 is essential for progression into mitosis during
embryonic development. Plk1 morphant cells displayed mitotic infidelity, such as abnormal centrosomes,
irregular spindle assembly, hypercondensed chromosomes, and a failure of chromosome arm separation.
Consequently, depletion of Plk1 resulted in mitotic arrest and finally death by 6 days post-fertilization. In
comparison, Plk2 or Plk3 morphant embryos did not display any significant abnormalities. Treatment of
embryos with the Plk1 inhibitor, BI 2536, caused a block in mitosis, which was more severe when used to
treat plk1 morphants. Finally, using an assay to rescue the Plk1 morphant phenotype, we found that the
kinase domain and PBD domains are both necessary for Plk1 function in zebrafish development. Our studies
demonstrate that Plk1 is required for embryonic proliferation because its activity is crucial for mitotic
integrity. Furthermore, our study suggests that zebrafish will be an efficient and economical in vivo system
for the validation of anti-mitotic drugs.
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Introduction

Exquisite mechanisms to preserve the integrity of the genome
exist at every step of the cell division process. Progression of mitosis
and cytokinesis must be precisely coordinated for accurate cell
division. Polo-like kinase 1 (Plk1), a conserved Polo family serine/
threonine kinase, has multifaceted roles in mitotic entry, progression,
exit, and cytokinesis (Barr et al., 2004; Petronczki et al., 2008).
Consistent with its broad range of functions, Plk1 localizes to each
significantmitotic structure as cells progress through cell division: the
centrosomes and kinetochores from prophase to metaphase, the
central spindle in anaphase, and the spindle midzone in telophase
(Barr et al., 2004).

Yeast possess a single Polo kinase, whereas metazoans possess at
least two Polo-like kinases: Drosophila expresses Polo and Plk4 (also
known as SAK) and mammals express four members of the Plk family
(Plk1, Plk2, Plk3, and Plk4) (Archambault and Glover, 2009). In all Plks,
carboxy-terminal Polo box domain (PBD) follows the Ser/Thr kinase
domain. However, Plk1, Plk2, and Plk3 are structurally related in that
they possess two Polo boxes, which are required to form binding
pockets for phosphorylated motifs in target proteins (Cheng et al.,
2003; Elia et al., 2003a,b). Of the three resembling Plks, reports
suggest that it is Plk1 that exerts most of its mitotic functions in
mammals (Petronczki et al., 2008). Meanwhile, the functions of Plk2
and Plk3 aremuch less understood. However, Plk2 and Plk3 have been
suggested to function in interphase (Archambault and Glover, 2009).

Unlike others, Plk4 has a single Polo box and is distinct from
other family members. How the PBD domain of Plk4 recognizes its
substrates is not yet understood (Archambault and Glover, 2009). In
Drosophila and humans, Plk4 is specifically and completely required
for centriole duplication (Bettencourt-Dias et al., 2005; Habedanck
et al., 2005). However, mice haploinsufficient in the Plk4 allele
exhibit mitotic infidelity and tumorigenesis, implicating Plk4 in cell
division (Ko et al., 2005). Taken together, it seems that the different
Plks exert both overlapping and distinct functions. The detailed
mechanism how different members of the Plk family are coordi-
nated in vivo is not yet fully established.

The function of Plk1 in the cell division cycle has been most
extensively studied in cell culture systems. However, the results are
complicated and controversial between transformed and non-
transformed cells: depletion of Plk1 activity results in mitotic arrest
in HeLa cells, but in G2 arrest in normal fibroblasts (Lane and Nigg,
1996). Inhibition of Plk1 in cancer cells induces apoptosis after a
mitotic delay (Gumireddy et al., 2005; Steegmaier et al., 2007),
while non-transformed cells survive Plk1 depletion (Liu et al.,
2006).
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Model organisms have provided critical clues about the functions
of Plk1 in cell division. Mutations in Plk1 orthologues in Drosophila
and yeasts result in mitotic arrest due to aberrant mitotic chromo-
some arrangements and abnormal spindle poles. Thesemutations also
lead to polyploid and aneuploid cells (Hartwell and Smith, 1985;
Llamazares et al., 1991; Ohkura et al., 1995; Sunkel and Glover, 1988).
In Xenopus, immunodepletion of Plx1, the orthologue of Plk1, in early
embryos results in the cleavage arrest that is associated with
monopolar spindles (Qian et al., 1998). As Plx1 is required for the
activation of Cdc25C and Cdk1-cyclinB (Qian et al., 2001), these
results indicate that Xenopus Plk1 is required at multiple points in
mitosis. Plk1-deficient mice exhibit early embryonic lethality around
the eight-cell stage; however, the heterozygous mice survive to
adulthood and display increased tumor incidence (Lu et al., 2008).
Taking these into account, it occurred to us that studying Plk1 in
zebrafish might help reveal its in vivo functions. Utilizing single cell
live-imaging techniques and cell biological assays in whole embryos,
we show the critical roles of zebrafish Plk1 in the homeostasis of
mitotic chromosomes, centrosomes, and microtubule spindles in
embryogenesis. The expression level and kinase activity of Plk1 were
crucial for embryonic growth and development; either increased or
decreased Plk1 levels led to chromosome instability. In comparison,
two other related Plk kinases, Plk2 and Plk3, were dispensable for
zebrafish embryogenesis. By soaking the developing embryos in egg
water treated with the Plk1 inhibitor BI 2536, we confirmed that the
drug is specific to Plk1 in zebrafish embryos; BI 2536-treated embryos
formed monopolar spindles and were completely blocked in mitosis,
followed by frequent cell death or premature exit frommitosis. Taken
together, these results suggest that Plk1 is essential in mitosis and,
therefore, is critically required for embryonic development. We also
demonstrate that zebrafish embryogenesis is an excellent in vivo
model system for assessing mitotic functions and validating the
efficiencies of mitotic kinase inhibitors.

Materials and methods

Zebrafish

Wild-type zebrafish were purchased from a local fish store.
Embryos were obtained through natural spawning and were raised
at 28.5 °C, injected, and staged, according to standard procedures
(Kimmel et al., 1995).

Cloning of zebrafish plk1, Plk2, Plk3, and Mad1

Zebrafish Plk1, Plk2, Plk3, and Mad1 cDNAs were cloned by RT-PCR,
based on the published mRNA sequences (Plk1, GenBank accession
number NM_001003890; Plk2, NM_001099245; Plk3, NM_201308;
Mad1, EMBL accession number BX927386.11). The cloned sequences
matched with the public databases with small variations: the Plk1
clone has an allelic variation that substitutes glutamate for lysine at
residue 340 in NP_001003890; theMad1 clone has Lysine and Proline
inserted in-frame before Glutamine at residue 329 in BX927386.11.
All of the sequences have been submitted to GenBank.

In situ hybridization

An antisense RNA probe for Plk1 was synthesized using SP6 RNA
polymerase in the presence of DIG RNA labeling mix (Roche), and in
situ hybridization was performed, as described (Jeong et al., 2006).

Injection of morpholinos (MOs) and sense RNAs

Translation-blocking plk1 ATGMO (5'-AATTGCAGCACTCATCGTTGTA-
CAC-3'), splice-blocking plk1 sMO (5'-GCTTTCCCAGCTCTTACCCTTCTGC-
3'), splice-blocking plk2 sMO (5'-TATGCAGTGTTTATCCTACCTTCTC-3'),
splice-blocking plk3 sMO (5'-TCTTGGTTGAAACAACTCACCT-3') were all
designed and purchased from GeneTools (Philomath, OR). For RNA
injection, Plk1 and Mad1 cDNAs were subcloned into pCS2-EGFP and in
vitro transcribed. Mutations in Plk1 were generated by site-directed
mutagenesis. Sense RNAwas synthesized using themMessagemMachine
kit (Ambion, Austin, TX). Plk1 RNA at (1 nl of 750 ng/μl) and Mad1 RNA
(1 nl of 1400 ng/μl), respectively, were injected into the yolk of one-cell
stage embryos.

Western blotting

Whole embryos were lysed in 3X SDS-PAGE sample loading buffer
and equal volumes of lysate were analyzed at each stage using a
mouse anti-Plk1 antibody cocktail (Zymed Laboratories, 1:250).

Antibodies and Immunofluorescence assays in whole embryos

The following antibodies were used for immunohistochemistry
and immunofluorescence microscopy: rabbit anti-phosphohistone H3
(Ser10) antibody (pH3, Millipore, Billerica, MA, 1:1,000); mouse anti-
α-tubulin antibody (Sigma, 1:500); mouse and rabbit anti-γ-tubulin
antibody (Sigma, 1:1,000). Alexa fluor-conjugated secondary anti-
bodies (Molecular Probes) and biotin-conjugated secondary anti-
bodies (Vector Laboratories, Burlingame, CA) were diluted at 1:1,000
for immunostaining.

In immunostaining experiments with anti-α-tubulin, anti-γ-
tubulin, and anti-pH3 antibodies, fluorescence microscopy was
performed after the embryos were fixed in 4% paraformaldehyde,
washed three times in PBS containing 0.1% Triton X-100 (PBT), and
rehydrated by serial washing with 50% PBT/methanol, 75% PBT/
methanol, and then 100% PBT. The embryos were treated with cold
acetone for 7 min at−20 °C and then washed twice with PBT. Finally,
the embryos were washed in PBS containing 1% DMSO, 0.05% Triton
X-100, and 0.01% Tween 20 (PBDTT). Fixed embryos were incubated
in blocking buffer (1% BSA, 10% goat serum in PBDTT) for 1 h. Primary
and secondary antibodies were incubated in the blocking solution,
washed, and finally mounted in Vectashield containing DAPI (Vector
Laboratories). Images of cells at the surface of the yolk or at the end of
the tail were taken and processed with DeltaVision (AppliedPrecision,
WA) (Choi et al., 2009). Optical sections (1 μm) of 14 images were
obtained, processed, and deconvolved using the SoftWarx program.

Metaphase chromosome spreads of zebrafish embryos

Metaphase chromosome spreads were performed according to the
published protocol for cultured MEFs (Lee et al., 1999), with
modifications to optimize for zebrafish embryos. Prometaphase arrest
was induced by treating embryos with 400 ng/ml nocodazole for 2 h
at 24 hpf in control embryos. Yolks were dissected away from the
embryos in 1.1% sodium citrate for 8 min at room temperature, and
embryos were transferred to new 1.1% sodium citrate and incubated
for 8 min on ice. The embryos were then incubated in a methanol/
acetate solution (3:1) for 20 min on ice and then at−20 °C overnight.
Each embryo was then minced with forceps in 50% acetic acid and
dropped on slides, dried, and counterstained with DAPI. Images were
taken on a Zeiss Axio Observer Z1 microscope with a 100× objective.

Time course measurement of mitotic entry and mitotic exit

5-bromo-2-deoxyuridine (BrdU) labeling was performed, as
previously described (Lee and Kimelman, 2002) in 24 hpf embryos
of control and Plk1 morphants. After 30 min of BrdU incorporation,
embryos were washed and incubated in egg water for 2h intervals for
up to 10 h, as indicated. The labeled embryos were then fixed in
paraformaldehyde, and subjected to double immunostaining with
anti-BrdU- and anti-pH3 antibodies. Mitotic cells (pH3-positive) with
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BrdU were counted and recorded as percentage of total cells at each
indicated time point.

Apoptosis assay

For TUNEL staining, embryos were fixed in 4% paraformaldehyde,
permeabilized in methanol, digested in proteinase K (5 μg/ml) for
5 min, fixed in 4% paraformaldehyde for 20 min, and then incubated
with 20 units of terminal deoxynucleotidyl transferase and 1.3 μM of
DIG-11dUTP (Roche Applied Science) for 4 h at room temperature.
Embryos were washed twice in a buffer containing 50% formamide,
2X SSC, and 0.1% Tween-20 for 15 min at 55 °C and then in PBS
containing 0.1% Tween-20. Apoptotic cells were visualized with
alkaline phosphatase-conjugated anti-DIG antibodies (Roche) and
NBT/BCIP.

MPM-2 staining and flow cytometry

Zebrafish embryos were dechorinatedmanually and washed twice
in PBS. Embryos were then meshed between two slides, and the
dispersed cells were washed once in PBS and passed through a 100-
μm cell strainer. Single cells were fixed in 70% ethanol at −20 °C. The
cells were then subjected to MPM-2 immunostaining, followed by
propidium iodide staining before analysis in flow cytometry. Flow
cytometry was performed using a FACSCantoTM II flow cytometer
(Becton Dickinson), as with cultured cells (Choi et al., 2009).

Analysis of the spindle assembly checkpoint
activation by Mad1 localization

One picomole of control or Plk1 morpholino oligos were injected
into one- to four-cell stage embryos with RNA expressing GFP-Mad1
(1.4 ng/embryo). At 24 hpf, zebrafish embryos (N 15 embryos) were
dechorinated and manually dissociated, as described above. For
controls, embryos were treated with 200 ng/ml of nocodazole for
2 h, washed in PBS, and dissociated. Cells were then centrifuged at
1200 rpm for 5 min at RT in a Cytospin (Shadon Cytospin4, Thermo
Scientific). After fixation in 4% paraformaldehyde, cells were counter-
stained with DAPI, and the images were processed and analyzed for
GFP-fluorescence with chromosomes on a DeltaVision RT.

Generation of H2B-GFP transgenic zebrafish

A transgenic line of zebrafish expressing zebrafish H2B
(NM_200117) fused to GFPwas generated using the Tol2 transposable
element system (pT2AL200R150G and pCS-TP) (Urasaki et al., 2006).
GFP-positive embryos were examined for mitotic timing and
chromosome segregation using time-lapse video microscopy. The
embryos with normal mitotic timing (NEBD to anaphase around
16 min without mitotic infidelity) were selected and allowed to
mature to adulthood.

Time-lapse microscopy of live embryos

H2B-GFP transgenic fish were crossed with wild-type fish and the
embryos were injected with either the control MO or plk1 ATG MO at
the one- to four-cell stages. Embryos were allowed to grow at 28.5 °C
and the GFP-positive embryos were manually dechorinated. In
Fig. 1. Expression and morpholino-induced knockdown of Plk1 in zebrafish embryos. (A) Al
from zebrafish and other species. Amino acid sequences were aligned using Clustal W. Conse
in Fig. 7. (B) Analysis of plk1 expression by in situ hybridization in wild-type zebrafish embry
sc, spinal cord; tec, tectum. (C) Embryos were injected with the indicated amounts of contr
26 hpf and subjected to western blot analysis (WB) with anti-human Plk1 antibody. The slow
of control (CM) or plk1 ATGMO (PM), and the whole embryo lysates were subjected toWB w
loading control.
experiments where BI 2536 treatment was used, the drug was
added at 22 hpf followed by 2 h incubation at 28.5 °C. Embryos were
then placed in 0.3% low melting agarose containing 150 μg/ml
tricaine. Time-lapse microsopy was done on a DeltaVision. Optical
sections (2 μm) of three consecutive images were collected every
2.5 min at 28.5 °C and merged.

In vitro kinase assay

Zebrafish Plk1, Plk2, and Plk3 cDNAs were cloned by RT-PCR from
zebrafish embryos and subcloning into pGEX 4 T-1. They were
expressed and purified as GST- fusion proteins from Escherichia coli.
In vitro kinase assays for Plk1, Plk2, and Plk3 were performed in the
absence or presence of BI 2536 (100 μM). In each reaction, 100 ng of
recombinant kinases were tested for kinase activity towards 10 μg of
Casein protein (Sigma) in a total volume of 30 μl of reaction buffer
(10 mM Tris at pH 7.5, 10 μM sodium vanadate, 10 mM MgCl2, 10 μM
ATP, 1 mM DTT, 5 μCi [γ-32P]ATP [3000 Ci/mmol, 10 mCi/mL]) at
30 °C. Reactions were stopped after 30 min by the addition of sample
buffer. Samples were resolved by SDS-PAGE and visualized by
autoradiography.

Results

Expression of plk1 in the proliferating regions of zebrafish embryos

To study the role of Plk1 in zebrafish embryogenesis, we first
cloned zebrafish Plk1 by RT-PCR. The amino acid sequence of zebrafish
Plk1 was 72.1% identical to that of human Plk1. Importantly, the
kinase domain, D-box, PBD 1, and PBD 2, all of which are important for
Plk1 function, were well conserved across species (Fig. 1A).

We next performed in situ hybridization to assess the expression
patterns of Plk1. Plk1 was expressed both maternally and zygotically
(Fig. 1B). The expression of Plk1 mRNA was ubiquitous by the bud
stage, but became restricted to the proliferating tissues, such as brain,
eyes, spinal cord, somites, fin folds, and tail bud, by 24 h post
fertilization (hpf) (Fig. 1B).

To understand the role of Plk1 in zebrafish development,
knockdown of Plk1 expression was performed by injecting morpho-
lino oligos (MO) that block translation initiation (ATGMO) or splicing
between exon 1 and intron 1 of plk1 (sMO). Two different MOs were
injected into the yolk of one- to four-cell stage embryos, and the
efficiency and specificity of these plk1 MOs was assessed by
immunoblotting zebrafish embryo lysates from 26 hpf with an anti-
Plk1 antibody cocktail. Injection of plk1 ATGMO and sMO at 0.5 pmol/
embryo and 0.25 pmol/embryo, respectively, reduced Plk1 expression
to ∼80% compared to the injection of control MO at 1 pmol/embryo
(Fig. 1C).

Next, we analyzed the effects of the plk1 MOs at various
developmental stages. We found that injection of 0.5 pmol of plk1
ATG MO decreased Plk1 levels by 26% at the bud stage, 74% at the 10-
somite stage, 77% at the 20-somite stage, and 79% at 24 hpf (Fig. 1D).
These results demonstrate that the activity of the plk1MOwas gradual
and most effective after gastrulation, probably due to the presence of
maternal Plk1. Because the phenotypes after injection of plk1 ATG MO
and sMO were similar in all experiments, we present here the results
obtained with plk1 ATG MO.
ignment of the ATP-binding pockets, D-boxes, and polo-box domains of Plk1 sequences
rved amino acids are highlighted in yellow. Asterisks indicate the mutated residues used
os at various developmental stages: hb, hindbrain; mhb, midbrain-hindbrain boundary;
ol MO, plk1 ATG MO, or plk1 sMO in the yolk. Whole embryo lysates were prepared at
er migrating band is a non-specific band (ns). (D) Embryos were injected with 0.5 pmol
ith anti-Plk1 antibodies. The same blot was reprobed with anti-β-actin antibodies for a
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Depletion of Plk1 expression results in growth defects and cell death
during zebrafish development

To assess the effects of Plk1 knockdown during embryonic
development, embryos injected with various concentrations of plk1
MO (0.25 to 1 pmol) were observed and photographed at different
developmental stages. Consistent with the high level of Plk1
expression that accumulated by the bud stage, plk1 MO did not
interfere with the embryonic development before the end of
gastrulation (data not shown). In contrast to the absence of a
phenotype before gastrulation in plk1 morphants, mice deficient in a
Plk1 allele exhibit early embryonic lethality (Lu et al., 2008). We
speculated that the presence of maternal Plk1 protein, which was
expressed from the abundant maternal transcripts, enabled the
zebrafish morphants to survive beyond gastrulation. This result
demonstrates that the zebrafish plk1 morphants provide advantages
for assessing the roles of Plk1 in vertebrate development.

Later in development, Plk1 morphants at 24 and 48 hpf displayed
growth defects: smaller body and tissue sizes compared to the control
morphants; fragile epidermis; and loosely organized tissues. These
defects became more severe with increasing doses of morpholino
(Fig. 2A).

When injected with 0.5 pmol of plk1MO, plk1morphants survived
until 4 days post fertilization (dpf) with growth defects (86%, n=49)
and then died by 6 dpf (100%, n=50). In contrast, 94% of the embryos
injected with 0.5 pmol of control MO survived to 6 dpf without any
signs of abnormality (n=50).

To examine whether plk1 knockdown induces apoptosis, control
and plk1 morphants were collected at 28 hpf and subjected to TUNEL
staining. We found that apoptotic cell death was markedly increased
in the plk1morphants, particularly in proliferating tissues, such as the
spinal cord, fin folds, and tail bud (Fig. 2B). Collectively, Plk1
knockdown by MO injection resulted in impaired embryonic growth
and apoptosis.

Knockdown expression of Plk1 results in prometaphase arrest

Next, we analyzed the molecular basis for embryonic growth
failure in plk1morphants. Because Plk1 participates inmitosis in other
species, we asked if Plk1 depletion affected themitotic cell cycle. After
being injected with plk1 MO, 24 hpf embryos were fixed and
immunostained with anti-phosphohistone H3 (pH3) antibody (Giet
and Glover, 2001; Hsu et al., 2000).We observed that Plk1 knockdown
resulted in a dramatic increase of pH3-positive cells throughout the
embryonic body (Fig. 2C), indicating the accumulation of mitotic cells
in plk1 morphant embryos that were defective in growth.

To determine if defects in mitosis existed, we adopted the BrdU
pulse-chase experiment in combination with the anti-BrdU and anti-
pH3 co-immunofluorescence assays (Shepard et al., 2007; Shepard et
al., 2005). In controls, BrdU-positive mitotic cells (cells positive for
both BrdU and pH3) dramatically increased 2 h post BrdU incorpo-
ration and dropped at 6 h post-pulse. The result indicates that G2/M
transition and mitotic entry took place at/around 2 h post-pulse and
exit frommitosis took place at/around 6 h in control embryos. In plk1
morphant embryos, mitotic entry began at/around 2 h, similar to the
control. However, exit from mitosis was detected around 10 h
(Fig. 2D). These results suggest that the plk1 morphant cells are
capable of entering into mitosis, but are then delayed in mitosis. This
mitotic delay may have resulted in embryonic growth failure.

Mitotic delay is primarily governed by the metaphase-anaphase
transition by the spindle assembly checkpoint (SAC), which inhibits
APC/C until all chromosomes achieve bipolar spindle attachment
(Nasmyth, 2005; Peters, 2006). Therefore, we asked whether Plk1
depletion resulted in SAC activation. It has been reported that Plk1 is
critical for stable kinetochore-spindle attachments in cultured cells
(Elowe et al., 2007) and that the treatment of HeLa cells with Plk1
inhibitors results in SAC activation (Lenart et al., 2007). To assess for
the SAC activation, we isolated cells from control and plk1morphants
at 28 hpf and subjected them to MPM2 immunostaining (Lee et al.,
1999). MPM-2 is a monoclonal antibody that is specific to mitotic cells
(Davis et al., 1983). In the event of SAC activation, such as due to
prolonged treatment with microtubule poisons, MPM-2 staining
increases dramatically over time. Thus, it occurred to us that the
index of MPM-2 staining would be a useful assessment of SAC
activation (Choi et al., 2009; Lee et al., 1999) in this setting. The result
showed that the number of cells immunostained with MPM-2 after
DNA replication was dramatically increased in plk1 morphants
(43.2%), compared to control (1.8%), supporting the idea that plk1
morphant cells are delayed in mitosis (Fig. 2E). Interestingly, plk1
morphants produced two distinct mitotic populations; 33.8% of the
cells displayed normal 4 N DNA and 9.4% of the cells exhibited 8 N
DNA content, indicating the presence of polyploid cells (Fig. 2E).

As a second assessment of SAC activation in plk1 morphants, we
scored and compared the numbers of prometaphase cells with Mad1
localized at the kinetochores. Mad1 is a component of the SAC
(Hardwick and Murray, 1995) and is required for Mad2 to localize to
kinetochores (Chung and Chen, 2002; Sironi et al., 2001). Because the
antibodies to Mad1 or Mad2 did not work in zebrafish embryos, we
cloned zebrafish Mad1 and linked it to GFP at the C-terminus, in vitro
transcribed, and co-injected the RNA into one- to four-cell embryos
with control or plk1 MO. In controls, less than 2% of cells were at
prometaphase where Mad1 was at the kinetochores (1.25%, n=672).
Nocodazole treatment increased the numbers of Mad1-localized
prometaphase cells (4.7%, n=1072). Notably, Plk1 depletion resulted
in a marked increase of Mad1-localized prometaphase cells (17.6%,
n=798), supporting that SAC is activated upon Plk1 depletion
(Fig. 2F). We were aware of the report that Mad1 phosphorylation
by Plk1was required forMad1 andMad2 to localize to kinetochores in
cultured cells (Chi et al., 2008). However, in zebrafish embryos, the
degree of Mad1 localized to kinetochores was not affected by the
depletion of Plk1 (Fig. 2G). Taken together, we suggest that Plk1
depletion during zebrafish embryogenesis led to SAC activation and
prometaphase arrest, resulting in growth defects.

Next, to closely examine the causes of the mitotic arrest associated
with Plk1 depletion, embryos were assayed for microtubule organi-
zation in relation to chromosomes by co-immunostaining with
antibodies against pH3 and α-tubulin. Tails from three embryos of
each group were cut and analyzed by fluorescence microscopy to
assess the mitotic phase, chromosome integrity, and spindle assembly
(Fig. 2H and supplemental Fig. S2). Compared to cells derived from
control morphants, plk1 morphant cells displayed a marked increase
in prometaphase cells, as shown by the patterns of microtubule
spindles in relation to the pH3-positive chromosomes (Fig. 2H, plk1
MO). Furthermore, none of the plk1 morphant cells analyzed had
entered anaphase, confirming that Plk1 knockdown led to delay in
mitosis (Fig. 3A).

Knockdown of Plk1 leads to centrosome defects, congression errors, and
impaired spindle assembly

Plk1 has been implicated in the centrosome-maturation check-
point in cultured cells (Lane and Nigg, 1996). Indeed, immunostaining
of the embryos with antibodies against α-tubulin and γ-tubulin
revealed centrosome defects in plk1 morphants. Mitotic cells in the
controls displayed well-separated centrosomes at opposite poles
(Fig. 3Ba). By comparison, knockdown of Plk1 frequently resulted in a
lack of γ-tubulin staining in one pole, while the opposite pole was
composed of two γ-tubulin-positive centrosomes in the same focal
plane (Fig. 3Bb). Monopolar spindles with circular chromosome
arrangements, which are indicative of a centrosome separation
failure, were also observed (5.5%, n=3) (Fig. 3Bc). A number of
Plk1-deficient cells displayed disorganized spindles with centrosomes



Fig. 2.DepletionofPlk1expression results ingrowth failure and apoptosisdue toactivationof SAC. (A) Zebrafish embryoswere injectedwithvarious concentrationsof control (Ctrl) orplk1
ATGMO (Plk1 MO) at the one- to four-cell stages. Photographs were taken at 48 hpf. (B) Embryos were injected with 0.5 pmol of control or plk1 ATGMO, and apoptosis was assayed by
TUNEL staining at 28 hpf. Apoptotic cells are shown as purple dots. (C) Embryos were injected with 1 pmol of control or plk1 ATG MO and stained with anti-phosphohistone H3, Ser10
(pH3) antibodies at 24 hpf. (D) Time course from S phase into/out of G2/M, as shown by BrdU incorporation followed by double pH3/BrdU staining at indicated time points post BrdU
pulse. Embryos injectedwith 0.25 pmol of control or plk1 ATGMO are compared. The percentage of BrdU/pH3 double-positive cells are represented in bar graphs (mean±s.e.m.; n≥385
cells from2embryos each). (E)MPM-2 staining formitotic indexmeasurement.X-axis, 7AAD forDNA staining;Y-axis,MPM-2 staining. (F) Comparisonof the percentage of cellswithGFP-
Mad1 at the prometaphase kinetochores in control, nocodazole-treated, and plk1MO-injected embryos. The results are the average of two independent experiments. At least 15 embryos
eachwereanalyzed ineachexperiment. (G) LocalizationofMad1at theprometaphase kinetochores in (F).Mad1 localization tokinetochoreswasnot affectedby thepresenceor absenceof
Plk1. (H) Embryos injected with 0.5 pmol of control or plk1 ATGMOwere subjected to co-staining with anti-α-tubulin and anti-pH3 antibodies at 24 hpf. Optical sections were acquired
every 1 μm at the end of the tails, merged and deconvoluted. Green, α-tubulin; red, pH3. Scale bar, 50 μm. Enlarged images are presented in Supplemental Fig. S2.
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of apparently different sizes, demonstrating defective centrosome
maturation (Fig. 3Bd and e). Multipolar spindles with disorganized
chromosomes were also observed (51.5%, n=28) (Fig. 3Be). In
addition to defects in centrosome maturation, a failure of chromo-
some congression was observed in Plk1-deficient cells (27%, n=15)
(arrows in Fig. 3Bb–d). Close examination of the results in Fig. 2H
(supplemental Fig. S2) at the single cell level confirmed the failure of
chromosome congression in cells of Plk1 morphants, as well as
irregularmicrotubule spindles (Fig. 3Cb–f). Collectively, zebrafish Plk1
is required for chromosome congression, centrosomematuration, and
regulation of microtubule spindle outgrowth. Defects in all of these
functions cause problems in bipolar spindle attachment to
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Fig. 3. Plk1 depletion leads to prometaphase arrest in zebrafish embryos, accompanied by congression failure and mitotic spindle abnormality. (A) A comparison of the percentage
of cells in the indicated stages of mitosis, as judged by the degree of chromosome condensation, nuclear envelope breakdown (NEBD), and chromosome arrangement relative to
spindle microtubules. (B) Embryos injected with 0.5 pmol of control or plk1 ATG MO were co-immunostained with anti-α-tubulin and anti-γ-tubulin antibodies at 24 hpf. Red, α-
tubulin; green, γ-tubulin. Arrows mark uncongressed chromosomes. (C) Analyses of single cells from the embryos of Fig. 2H (and supplemental Fig. 2). Scale bar, 5 μm.
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chromosomes and activation of SAC (Acquaviva et al., 2004).
Therefore, it is likely that all of the observed mitotic infidelity induced
the activation of SAC and subsequent growth arrest in plk1
morphants.

Plk1 knockdown results in chromosome instability in zebrafish embryos

To analyze the chromosome number, single cell suspensions were
prepared from morphant embryos at 28 hpf, and their DNA contents
were analyzed (Fig. 4A). Cells isolated from the control morphants
displayed the typical high 2 N DNA and lower 4 N DNA peaks that are
found in proliferating cells (Fig. 4A, straight blue line). In comparison,
cells of the plk1 morphants displayed markedly lower 2 N and higher
4 N DNA contents, and a broad range of cells exhibited ∼8 N DNA
contents, indicating the presence of polyploid cells, including the cells
arrested in M phase. The sub-G1 population of cells, which is
indicative of apoptotic cells, was markedly increased in plk1
morphants (Fig. 4A, broken line).
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Fig. 4. Severe chromosome abnormalities in plk1morphant embryos. (A) Embryos were injected with 0.25 pmol of control or plk1 ATGMO and single cell suspensions were prepared
at 28 hpf. DNA contents were measured by Propidium Iodide (PI) staining and flow cytometry. (B) Metaphase chromosome spreads from control (Ctrl MO) or Plk1morphants (Plk1
MO). Chromosome numbers (Chr #) and scale bars are indicated. Enlarged images are shown at the right. (C) Chromosomes with closed arms were counted in control or plk1
morphants and compared and represented as percentages in a bar graph. (D) Representative chromosome spreads prepared without nocodazole treatment. Scale bar, 5 μm. (E) The
ratio of hypercondensed chromosomes (Dc), scored from 150 metaphase spreads of 20 embryos each. Data from control morphants treated with nocodazole were included for
control. (F) The presence of diplochromosomes (Dd) in plk1 morphants.
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Next, embryos from control and plk1morphants were subjected to
metaphase chromosome spreads to characterize chromosomal ab-
normalities. Diploid zebrafish cells have 50 chromosomes (Fig. 4B, Ctrl
MO). In comparison, the chromosome number in plk1morphants was
heterogeneous from cell to cell, indicative of aneuploidy (Fig. 4B, Plk1
MO). These data confirmed that Plk1 depletion results in chromosome
number aberrations in zebrafish embryos.

One of the significant features of the metaphase chromosomes
prepared from plk1 morphants was a high incidence of closed
chromosome arms (92%, n=38), while chromosome spreads from
control morphants displayed open chromosome arms (98%, n=50)
(Fig. 4B–C). Polo-like kinase phosphorylates cohesins in prophase,
which leads to the dissociation of cohesins from chromosomes arms
in prophase and pometaphase (Hauf et al., 2005; Losada et al., 2002;
Sumara et al., 2002). Prolonged nocodazole treatment leads to
hyperactivation of Plk1, leading to dissociation of cohesins from
chromosome arms, but not of centromeric cohesion until anaphase,
resulting in open arm (X-shaped) chromosomes in humanmetaphase
cells (Gimenez-Abian et al., 2004). It is thought that the resolution of
cohesion in Drosophila and mammals occurs in two steps: first, the
dissociation of cohesion from chromosome arms in prophase-
prometaphase, followed by the cleavage of centromeric cohesion by
separase in anaphase onset (Nasmyth, 2002; Nasmyth and Haering,
2009; Watanabe and Kitajima, 2005). Meanwhile, the prophase–
prometaphase contribution of chromosome arm separation in yeast is
not significant; thus, the chromosome separation occurs in one step
(Lee et al., 2005; Nasmyth and Haering, 2009; Peters et al., 2008).
Analysis of metaphase chromosomes in plk1 morphant embryos (Fig.
4B–C) suggested that chromosome separation in zebrafish is likely to
occur in two steps, as it does inmammals, and that Plk1 is required for
the dissociation of cohesins from chromosome arms in prophase-
prometaphase.

Next, we analyzed the mitotic chromosomes in the absence of
nocodazole. In control morphant cells, condensed chromosome
spreads were rarely found (Fig. 4Da). In comparison, the chromo-
somes of plk1 morphants were highly condensed even without
nocodazole treatment, consistent with our notion that Plk1 depletion
induces prometaphase arrest (Fig. 4Db–d and E). Interestingly,
hypercondensed chromosomes, which are characterized by extremely
short chromosome arms with indistinguishable centromeres were
observed in plk1morphants (Fig. 4Dc). The frequency of chromosome
spreads exhibiting these short hypercondensed chromosomes in-
creased as the concentration of plk1 morpholino increased (Fig. 4E).
These results suggest that Plk1 regulates chromosome condensation.

A small number of chromosome spreads from plk1 morphants
exhibited diplochromosomes, which are composed of two pairs of
sister chromatids linked together. These diplochromosomes are
thought to result from a failure of sister chromatid arm separation
that continued during the replication of chromosomes in the
subsequent cell cycle (Ghosh et al., 1993) (Fig. 4Dd and F).
Diplochromosomes have been observed in separase mutants in
Drosophila, mouse, and zebrafish (Goyanes and Schvartzman, 1981;
Kumada et al., 2006; Shepard et al., 2007; Stratmann and Lehner,
1996). We interpreted these observations, as follows: Plk1 knock-
down during zebrafish embryogenesis results in the failed dissocia-
tion of cohesion along the arms and centromere, premature mitotic
exit, and chromosome duplication in the subsequent cell cycle.
Embryos treated with nocodazole did not show any diplochromo-
somes (n=382) because nocodazole treatment prevented these cells
from exiting mitosis in plk1 morphants. Collectively, these data
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suggest that Plk1 is also involved inmitotic exit. However, in zebrafish
embryogenesis, Plk1 is primarily required for mitotic progression
rather than mitotic exit, as illustrated by a low percentage (1–8%) of
diplochromosomes. We speculate that this is because mitosis
precedes mitotic exit and indicates that in rapid and continued cell
division of zebrafish embryogenesis, Plk1 is primarily needed in
mitosis.

Live-imaging reveals that Plk1 is essential, whereas Plk2 and Plk3 are
dispensable in mitosis of living embryos

We considered that visualization of cell division after Plk1
depletion in living organisms might be the most persuasive way to
establish the functions of Plk1 in development. Towards this end,
zebrafish hasmany advantages because their embryos are transparent
and their development is rapid. Taking these advantages into account,
we attempted to observe and record cell division events before and
after morpholino injection of live embryos.

We first made a transgenic zebrafish that expresses a GFP-tagged
histone, H2B-GFP. Twenty hours after injection of morpholino oligos
into the embryos of these transgenic fish, chromosome movements
and cell division were recorded at the single cell level using time-
lapse microscopy.

Cells from the control morphants underwent mitosis for an average
of 16.9±3.3 min (n=48 from 14 embryos) from the point of nuclear
envelope breakdown (NEBD) to chromosome segregation to opposite
poles (Fig. 5A and I, supplemental Movie 1). In comparison, plk1
morphant cells remained in mitosis for 190.1±127.1 min (Fig. 5B–E
and I). As shown in Table 1, the arrest was not permanent: 57.1% of plk1
morphant cells were delayed in mitosis but finally segregated their
chromosomes; 28.6% segregated with uncongressed chromosomes
(white arrow in Fig. 5B, Supplementary movie 2); and 14.3% displayed
Polo-type chromosomes andwere delayed inmitosis. These cells exited
mitosis without segregation (Fig. 5C, supplementary Movie 3). Chro-
matin bridges (Fig. 5D, white arrow, supplemental Movie 4) and
multiple metaphase plates were frequently observed, and a single cell
often gave birth to three or more aneuploid cells (Fig. 5E, supplemental
Movie 5). The death of mitotic cells was not observed during the course
of the recording, suggesting that apoptosis (Fig. 2) occurs later (Table 1).

Plk2 and Plk3 resemble Plk1 in structure, and the small molecule
inhibitor BI 2536, which specifically blocks Plk1 activity, can also block
the kinase activities of Plk2 and Plk3 in vitro when used in higher
concentrations than what is needed to specifically inhibit Plk1
(Steegmaier et al., 2007). To examine if remaining Plk2 or Plk3
compensated for the depletion of Plk1, we monitored the effects of
knockdown gene expression of Plk2 and/or Plk3. Time-lapse micros-
copy of Plk2 and/or Plk3 morphant embryos revealed that Plk2 and
Plk3 were dispensable for progression into mitosis in zebrafish
embryos: the mitotic timing of plk2 morphants (Fig. 5F and I,
supplemental Movie 6) or plk3 morphants (Fig. 5G and I, supplemen-
tal Movie 7) were similar to controls (Fig. 5A and I). In addition,
embryos depleted of Plk2 or Plk3 did not display any
significant abnormalities (data not shown). Mitotic infidelities
observed in plk1 morphant embryos were not observed in plk2 or
plk3morphants (Fig. 5F–H). Co-injection of Plk2MO and Plk3MO also
Fig. 5. Live-cell imaging reveals that Plk1 is essential in mitotic progression, but Plk2
and Plk3 are dispensable in zebrafish embryos. (A–H) Transgenic zebrafish embryos
expressing H2B-GFP were injected with 0.5 pmol of control (A), plk1 ATG MO (B-E),
plk2 splicing MO (F), plk3 splicing MO (G), plk2 splicing MO and plk3 splicing MO
(H, supplemental movie 8). The surface of the yolk was subjected to time-lapse
microscopy, and images were captured every 2.5 min in 22 hpf embryos. The time from
NEBD is shown as h:min:s. Black arrows mark the point of anaphase onset. White
arrows mark the uncongressed chromosomes in B, lagging chromosomes in D, and
multiple metaphase plates in E, respectively. Scale bar, 10 μm. (I) Box plots of mitotic
timing, measured from NEBD to the onset of anaphase. At least 30 cells frommore than
five embryos each were scored. Bars within the boxes are the median values, as
determined by statistical analysis using SPSS software.
did not cause any abnormalities in mitosis (Fig. 2H and I). These
results suggest that Plk1 is essential, while Plk2 and Plk3 are
dispensable for mitosis in zebrafish. Live-imaging of whole embryos
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Table 1
Analysis of mitosis in Plk1-depleted zebrafish embryos.

Ratio (%)

control MO plk1 MO

Normal segregation 100 0
Segregation after mitotic delay 0 57.1
Segregation with uncongressed chromosomes 0 28.6
Mitotic slippage 0 14.3
Number of embryos examined n=5 n=8
Total cell number n=116 n=154
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supported our previous interpretation that mitotic infidelities by the
depletion of Plk1 induced SAC activation and subsequent mitotic
delay (Fig. 5I).

Next, we made more precise characterizations of the aberrant
chromosome segregation (Gisselsson, 2008) and asked whether the
chromosome abnormalities became more severe with time. Defects
observed in Plk1-depleted cells before 24 hpf displayed multipolar
segregation (14.3%), lagging chromosomes (14.2%), or chromatin
bridges (7.9%). Six percent of cells exited mitosis without chromo-
some segregation. Mitotic infidelity became more severe with time in
development; the number of cells that managed to correct the
problem and enter anaphase was decreased at 26 hpf compared to
24 hpf (Table 2).

BI 2536, a Plk1 inhibitor developed in cancer cell lines, blocks mitotic
progression in developing zebrafish embryos

Cancer cells exhibit an unlimited proliferative capacity; hence,
regulating the proliferation of cancer cells has been one of the major
approaches of cancer therapy. The development of inhibitors for
mitotic kinases has attracted considerable attention, and a number of
them are currently being tested in clinical trials (Taylor and Peters,
2008). BI 2536 was developed through efforts to screen for small
molecules that specifically inhibit Plk1 (Lenart et al., 2007; Steegmaier
et al., 2007). As we observed that Plk1 was required for embryonic
proliferation and, thus, was needed for zebrafish embryogenesis, we
asked whether BI 2536 could inhibit Plk1 function in zebrafish
embryos. We also considered that zebrafish embryogenesis could be a
useful in vivo system for validating the effects of mitotic kinase
inhibitors, such as anti-cancer drugs.

Soaking the dechorinated early stage embryos in BI 2536-treated
egg water resulted in massive embryonic death, even at low
concentrations (100 nM). Therefore, we optimized the timing and
dose of the BI 2536 treatment to analyze the effect of Plk1 inhibition at
the cellular level. As a result, we found that 100 μM of BI 2536
treatment to 22 hpf embryos was best for observing the effects of the
drug on cell division.
Table 2
Mitotic timing from NEBD to the onset of anaphase in plk1 morphants.

Before 26 hpf After 26 hpf

(%) Duration (min) (%) Duration (min)
(mean±sd) (mean±sd)

Segregation after
delay

55.6 86.6±60 33 149±78.1

Multipolar
segregation

14.3 116.7±49.8 12.1 188.4±88.3

Lagging
chromosomes

14.2 136.9±68.3 4.4 255±107.4

Chromatin
bridges

7.9 181.5±74.1 23 252.3±92.9

Multiple defects 1.6 170±0 7.7 236.1±63.2
Mitotic slippage 6.4 313.1±94.8 19.8 396.1±137.5
Total cell number 63 91
H2B-GFP transgenic embryos, which were generated to facilitate
the monitoring of chromosome movements, were injected with
morpholino oligos for control, plk1, plk2, plk3, or plk2 MO + plk3 MO.
Then the embryos were let to develop for 24 hours. The drug was
applied at 24 hpf and incubated for 2 h at room temperature. Then the
embryos were subjected to time-lapse microscopy for more than 16 h
with continuous treatment of 100 μM BI 2536 (Fig. 6A).

Compared to the one- to four-cell stage embryos, BI 2536 toxicity
was markedly reduced in 22 hpf embryos. However, the live-imaging
explicitly showed that themitotic timingwasmarkedly delayed in the
cells of the BI 2536-treated embryos: timing from NEBD to anaphase
onset took ∼14 min in the control (Fig. 6B, Supplemental movie 9),
whereas cells of the BI 2536-treated embryos were arrested in mitosis
for at least ∼10 h (Fig. 6C, supplemental Movie 10). Similar to the plk1
morphants, uncongressed chromosomes were apparent in the control
morphant cells treated with BI 2536 (Fig. 6C). Notably, BI 2536-
treated embryos exhibited more severe phenotype compared to plk1
morphants. Plk1-depleted cells were delayed in mitosis for ∼200 min,
but ∼86% of those eventually segregated (Table 1). By comparison,
cells from BI 2536-treated embryos never segregated their chromo-
somes during the 16 h recording. Some plk1 morphant cells exited
from mitosis without dividing (Fig. 6C–G and H). Another prominent
feature of the BI 2536-treated embryos was the dominance of
monopolar spindles, whereas plk1 morphants displayed multipolar
spindles (51%) and much less monopolar spindles (5.5%).

The concentration of BI 2536 that was required in zebrafish
embryos was 1,000-fold higher than the minimum amount required
to inhibit Plk1 in cultured cells. At such high concentrations, BI 2536
can also inhibit the kinase activities of Plk2 and Plk3 (Steegmaier et al.,
2007). Therefore, we tested whether Plk2 or Plk3 kinase activities
were inhibited in 100 μM of BI 2536, in vitro. Indeed, in vitro kinase
assays revealed that the addition of 100 μM of BI 2536 completely
blocked all three kinase activities (supplemental Fig. S4). However,
Plk2 and Plk3 were dispensable in embryonic proliferation (Fig. 5).
Therefore, it is likely that the effect of BI 2536 treatment resulted from
inhibiting Plk1, and not Plk2 or Plk3 in vivo. Nevertheless, we asked
whether the mitotic arrest and defective cell division caused by
100 μM BI 2536 in vivo were due to the inhibition of Plk2 and Plk3, as
well as Plk1.

BI 2536 was added to embryos injected with plk1 MO-, plk2 MO-,
plk3 MO, or plk2 MO + plk3 MO. Because BI 2536-treated embryos
never segregated during the experiment, but some chromosomes
decondensed without segregation, we measured the timing from
NEBD to mitotic exit. Intriguingly, plk1 morphants treated with BI
2536 exhibited themost severe phenotype in that the NEBD tomitotic
exit timing was the longest (∼ 14 h, Fig. 6H). By comparison, mitotic
infidelities by the BI 2536 treatment to embryos injected with plk2
MO, plk3 MO, or the combination of both, all resembled the control
cells treated with the drug (Fig. 6E–G). The timing from NEBD to
mitotic exit was similar as well (Fig. 6H). This result is consistent with
the observation that plk2- and plk3morphant embryos did not display
any mitotic abnormalities (Fig. 5F–I). Taken together, the mitotic
arrest and the absence of cell division in BI 2536-treated zebrafish
embryos is likely to result from complete inhibition of Plk1, in vivo. It
is thought that the reason why BI 2536-treated embryos exhibited a
more severe phenotype compared to plk1 morphants is because BI
2536 treatment is more effective compared to knockdown expression
of Plk1 by morpholino injection. Combination of both plk1 MO
injection and BI treatment resulted in maximal phenotype (Fig. 6D)
supports this interpretation.

To confirm the “Polo-type” spindle formation in the BI 2536-
treated embryos, BI 2536-treated or untreated embryos were
subjected to immunostaining with α-tubulin and γ-tubulin anti-
bodies. Indeed, the BI 2536-treated embryos exhibited monopolar
spindles (Fig. 6F), as was observed in HeLa cells (Lenart et al., 2007). In
the developing embryos, the drug effectively blocked the cells from



Fig. 6. Treatment of 24 hpf embryos with BI 2536, the small molecule inhibitor specific for Plk1, leads to mitotic infidelity and prometaphase arrest. (A) Scheme of BI 2536 treatment in
developing zebrafish embryos. Embryos at one-to four-cell stagewere injectedwith indicatedmorpholino oligos and the drugwas treated at 24 hpf. (B) Captured images of cells from the
control embryos. The black arrowmarks the timing of anaphase onset. The time at NEBD was set to 0. (C–G) Captured images of BI 2536-treated embryos after the injection of indicated
morpholinos (supplementalmovies 10-14). (H) Box plots of timing fromNEBD tomitotic exit. More than 50 cells from at least five embryos eachwere analyzed. Barswithin the boxes are
the median values, determined by statistical analysis using SPSS software. Note that BI 2536 treatment in plk1 morphants exhibit more severe phenotype compared to others.
(I) Immunofluorescence of the fixed embryos with anti-α-tubulin and -γ-tubulin with or without BI 2536 treatment. Note the monopolar spindles in BI 2536-treated embryos.
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entering anaphase. We were not able to control cytokinesis with this
drug, as in HeLa cells (Lenart et al., 2007). Taken together, BI 2536
inhibited Plk1 function and arrested cells in mitosis during zebrafish
development. These results establish zebrafish embryogenesis as an
efficient model system to validate the effects of mitotic kinase
inhibitors. The live-imaging technique of developing zebrafish
embryos used here could be applied to screens for effective inhibitors
for Plk and other mitotic kinases. Furthermore, the zebrafish system
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may prove to be a promising in vivo validation system for anti-cancer
drugs.

Imbalanced Plk1 activity leads to mitotic infidelity

In this study, we have developed compelling lines of evidence that
inhibition or knockdown of Plk1 expression interferes with mitotic
progression and can trigger chromosome instability. In numerous
reports, elevated expression of Plk1 has been observed in many cancers
(Smith et al., 1997; Takai et al., 2005). Therefore, we asked whether
over-expression of Plk1 affects embryogenesis. We injected RNAs
encoding GFP; wild-type Plk1; the kinase dead mutant K68R, where
the ATP-binding pocket of the kinase domain is mutated; the non-
degradable D-boxmutant R324A (Lindon and Pines, 2004); and the PBD
domain mutant W414F (Lee et al., 1998) (Fig. 1A). All Plk1 constructs
were fused to GFP at their N-terminus to detect ectopic Plk1 expression.

GFP-plk1 or GFP sense RNAs were injected into the yolk of one-cell
stage embryos and the expression of GFP was monitored by
fluorescence microscopy. The levels of GFP expression between
embryos injected with GFP alone or various RNAs of GFP-Plk1 were
indistinguishable until the end of gastrulation, after which the GFP
fluorescence of the wild-type, K68R, and W405F expressing embryos
rapidly decreased. The fluorescence intensity of the D-box mutant
R324A decreased to a much lesser extent (data not shown).

Next, we investigated any change in mitotic cells after RNA
injection. Embryos were fixed at the 18-somite stage and stained with
anti-pH3 antibody. The number of pH3-positive cells increased
markedly in embryos injected with the wild-type, K68R, W405F, and
Fig. 7. Injection of wild-type Plk1, kinase-dead mutant, D-box mutant, and PBD domain mut
Embryos were injected with various GFP-plk1 RNAs alone (A) or in combination with plk
antibodies (red) to assess the effect of the expression of these RNAs on mitosis. Enlarged ima
to a moderate level in R324A compared to the control GFP-injected
embryos (Fig. 7A). Interestingly, a significant number of cells in
embryos of the wild-type (100%, n=13), the kinase-dead mutant
K68R (100%, n=12), the D-boxmutant R324A (61.5%, n=13), and the
PBD-box mutant W405F (80%, n=10) displayed highly disorganized
mitotic chromosome arrangements, as revealed by immunostaining
with anti-pH3 (Fig. 7A, inner box), which is indicative of mitotic
infidelity in these embryos. These results suggest that over-expression
of either the wild-type or the mutants resulted in a defective
chromosome arrangement in mitosis. This observation is in accor-
dance with the reports from HeLa cells, which showed that the over-
expression of wild-type or kinase-dead Plk1 resulted in mitotic arrest
(Mundt et al., 1997; Tang et al., 2006). Taken together, both over-
expression and inhibition of Plk1 result in problem in mitosis;
therefore, a balanced level and function of Plk1 is required for proper
mitotic progression.

Finally, we determined which domain of Plk1, the kinase domain,
D-box, or PBD domain, was most responsible for its function during
mitosis. We injected various Plk1 RNAs simultaneously with the plk1
MO at the one-cell stage and analyzed the ability of each mutant to
rescue the Plk1 depletion phenotype. The embryos were fixed at the
18-somite stage, and the pH3-positive mitotic cells were identified.
Because plk1 ATG MO was designed to block the translation of
endogenous plk1 specifically, it did not interfere with the translation
of GFP-Plk1. To avoid the effect of Plk1 over-expression (Fig. 7A), we
were careful to optimize the amount of RNA injected.

Injection of wild-type and R324A partially rescued the disorga-
nized chromosomes (Fig. 7B, inner box) and mitotic arrest
ant RNAs (illustrated and marked in Fig. 1A) in wild-type and plk1 morphant embryos.
1 MO (B). Embryos were collected at the 18-somite stage and stained with anti-pH3
ges of chromosomes stained with anti-pH3 are shown in the inner box for comparison.
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phenotypes (Fig. 7B, number of pH3-positive cells, red) caused by plk1
MO: the percentage of embryos with disorganized chromosomes
immunostained with anti-pH3 antibodies was 100% (n=22) for GFP-
injected embryos; 31.25% for wild-type Plk1-injected embryos
(n=16); and 33.3% in R324A-injected embryos. In contrast, injection
of K68R orW405F RNAwas not capable of rescuing themitotic defects:
95% (n=20) of K68R-injected embryos and 100% (n=12) of W405F-
injected embryos displayed disorganized chromosomes. The number
of pH3-positive cells in embryos injected with K68R or W405F with
Plk1 MOs was increased even more compared to control plk1
morphant embryos (GFP alone); this treatment exacerbated the
mitotic defects (Fig. 7B, inner box). These results indicate that both
the kinase and the PBD domains are required during mitosis, in vivo,
consistent with previous reports from structural studies and cell
culture systems. The substrate-specific kinase activity of Plk1
is coordinated by the kinase and PBD domains (Cheng et al., 2003;
Elia et al., 2003a,b; Garcia-Alvarez et al., 2007; Kang et al., 2006; van
de Weerdt et al., 2008). The reason why the D-box mutant R324Awas
able to rescue the mitotic defect of the plk1 morphants may be
because Plk1 is degraded after mitosis, during mitotic exit (Lindon
and Pines, 2004); thus, during mitosis, R324A would behave like the
wild-type.

Discussion

Mitosis and development

Cell cycle regulators play crucial roles during development
(Budirahardja and Gonczy, 2009). The asymmetric distribution of
Plk1 in Caenorhabditis elegans differentially regulates the duration of
the cell cycle in two-cell stage embryos and contributes to fate
determination by establishing cell polarity (Budirahardja and Gonczy,
2008; Rivers et al., 2008). This finding suggests that the timing of
mitosis, duration of mitotic entry, and mitotic progression are all
coupled to cell fate determination during development.

We have shown here that zebrafish embryogenesis requires Plk1
for mitotic progression and proliferation. We were not able to assess
the role of Plk1 in early embryogenesis because Plk1 was expressed
maternally and the morpholino was not effective before gastrulation.
Nevertheless, we have shown that Plk1 is essential for mitotic
chromosome homeostasis and bipolar spindle assembly after gastru-
lation, implying that it may play similar roles in early embryos.

Plk1 knockdown resulted in deregulated chromosome condensa-
tion, impaired cohesin dissociation/chromosome arm separation,
irregular spindle organization, and multipolar or monopolar centro-
somes. These features are reminiscent of the chromosome instability
observed in cancer cells; thus, the results presented here have
implications in the understanding of chromosome instability in
cancer.

In the metaphase chromosome spreads, we found that Plk1 is
required for proper chromosome condensation and chromosome arm
separation in embryogenesis. In addition, through attempts to rescue
the plk1 morphant phenotype, we found that the kinase activity of
Plk1 was required for its mitotic functions. These results raise an
important question regarding the downstream targets of Plk1 in
chromosome homeostasis that should be addressed in the future.
When zebrafish genetics, morpholino technology, and the cell biology
assays shown in this work are combined, the discovery of the critical
substrates of Plk1 in chromosome condensation and cohesion may be
achieved.

Injection of wild-type, kinase-dead mutant, non-degradable
mutant, and PBD domain mutant RNAs all resulted in disorganized
chromosomes when endogenous Plk1 was present. Taken together
with the results of the rescue experiment (Fig. 7B), these findings
suggest that maintenance of the level of intact Plk1 per se is critical for
mitotic fidelity and development.
Plk1 depletion and the activation of SAC

We showed here that Plk1 depletion results in mitotic delay and
embryonic growth defects. Cells from plk1 morphant embryos were
arrested in mitosis, as evidenced by the time course experiment of
double BrdU/pH3 staining and live-imaging. Thesewere accompanied
by a marked increase of MPM-2 staining and prometaphase cells. To
assess the activation of SAC, we asked for the localization of BubR1
and Mad1/Mad2 at the kinetochores. However, because the anti-
bodies against the core SAC components did not work in zebrafish, we
were not able to confirm the activation of SAC by immunofluores-
cence. Therefore, we cloned zebrafish Mad1, linked it to GFP, and
utilized the GFP-Mad1 fluorescence to assess the activation of SAC.
Previously, it was suggested that phosphorylation of Mad1 by Plk1 is
required for kinetochore localization of Mad1/Mad2 and the
consequent activation of SAC (Chi et al., 2008). However, in zebrafish,
Plk1 depletion did not interfere with Mad1 localization at the
kinetochores. Notably, the number of prometaphase cells, with
Mad1 at the kinetochores, increased markedly in zebrafish embryos
injected with pk1MO even compared to nocodazole-treated embryos.
These results suggest that SAC is activated upon depletion of Plk1 in
zebrafish embryos. This interpretation is in agreement with a report
from HeLa cells: BI 2536-treated HeLa cells display mitotic delay and
increased Mad2 localization at the kinetochores, indicative of SAC
activation (Lenart et al., 2007). Mad1 is required for Mad2 to localize
to the kinetochores. Therefore, we assume that Mad2 localization at
the kinetochores is likely to have been increased, along with Mad1, in
plk1 morphants. Thus, the results presented here demonstrate that
Plk1-mediated phosphorylation may not be crucial for Mad1
localization, and the activation of SAC, in zebrafish. The discrepancy
between zebrafish and cultured cells (Chi et al., 2008) is not
understood.
Visualizing mitosis in developing embryos

Mitosis is a carefully orchestrated sequence of events. Each mitotic
event is dependent on previous events in a spatiotemporal- and stage-
dependent manner. Thus, the visualization of this orchestration is
essential for understanding the fundamentals of mitosis. A single cell
live-imaging technique has been developed for cultured mammalian
cells, which has resolved many controversial details of mitotic
mechanisms (Hagting et al., 2002; Kanda et al., 1998; Lindon and
Pines, 2004; Nilsson et al., 2008).

In this study, we adopted this single cell live-imaging technique for
use with whole zebrafish embryos. Live-imaging of a living organism,
combined with the rapid development and ex vivo embryogenesis of
zebrafish, enabled us to functionally validate the effects of BI 2536 in
live embryos. This Plk1 inhibitor was originally developed through
chemical library screens conducted in cultured cancer cell lines, in
which a number of critical mutations in variable checkpoint
responses, apoptosis, and DNA repair exist. Therefore, the efficacy of
the drug can differ from cell line to cell line and in cancer patients.
With live-imaging in whole embryos, we were able to observe that BI
2536 specifically interfered with mitotic events, such as bipolar
centrosome formation/maturation and chromosome congression in
proliferating zebrafish embryos. Interestingly, BI 2536 treatment
resulted specifically in the formation of monopolar spindles, while
plk1 MO injection produced multipolar, and a few monopolar,
centrosomes. This difference suggests that centrosome formation,
separation, and maturation are all coordinated, but individual events
are mediated by the degree of Plk1 activity. Taken together, our
results validate the effects of Plk1 inhibition by BI 2536 in zebrafish
development. Furthermore, these results imply that the potential of
using zebrafish embryogenesis for screening and validation of anti-
mitotic drugs is promising with respect to cost and time.
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Despite the severe phenotypes of Plk1 depletion at the cellular level,
massive cell death was not observed in plk1 morphants until 6 dpf. This
lower sensitivity of zebrafish embryos to Plk1 knockdownmay be due to
thepresence ofmaternal Plk1 proteins. However, other Polo-like kinases,
Plk2, Plk3, and Plk4 are present in zebrafish, as they are in human cells:
therefore, the possibility remained that the other Plk proteins compen-
sated for the loss of Plk1 in mid-to-late zebrafish embryos. To assess this
possibility, we examined the phenotypes of Plk2 and Plk3 depletion by
morpholino injection. The result showed that Plk2 and Plk3 are largely
dispensable in embryogenesis. Although the functions of Plk2 and Plk3
are not fully established, reports suggest that they have functions in the
interphase checkpoint or replication (Archambault and Glover, 2009).
Since we have extensively examined their effects in mitosis, but not in
interphase, the possibility that Plk2 or Plk3 has some roles in interphase
upon environmental attacks still remains. Nevertheless, we have shown
that Plk1 is crucial, while Plk2 and Plk3 are dispensable, inmitotic fidelity
and embryogenesis. Because Plk4 is more structurally different than the
other Plks and has specific functions, we did not investigate the outcome
of the loss of Plk4 in this study and left it for future studies. However,
haploinsufficiency of Plk4 in mice results in mitotic infidelity and
carcinogenesis due to multipolar centrosomes and spindle irregularities
(Ko et al., 2005), similar to our observations of Plk1depletion in zebrafish.
Therefore, the possibility that Plk4 partially compensates for the loss of
Plk1 during zebrafish development is not fully excluded.
Acknowledgments

The Tol2 transposable element system used for generating the
zfH2B-GFP zebrafish was a generous gift from Dr. Kawakami of the
National Institute of Genetics, Japan. This work was supported by the
Basic Science Research Program through the National Research
Foundation of Korea (NRF), which is funded by the Ministry of
Education, Science and Technology (MEST) (No. 2009-00831530);
and the research program for New Drug Target Discovery through the
NRF of Korea, which is funded by the MEST (No. 2009-0093927). KH
Jeong is a recipient of Seoul Science Fellowship and J Jeong was
supported by the RCFC (R11-2005-009-03004-0).
Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.ydbio.2010.06.004.
References

Acquaviva, C., Herzog, F., Kraft, C., Pines, J., 2004. The anaphase promoting complex/
cyclosome is recruited to centromeres by the spindle assembly checkpoint. Nat.
Cell Biol. 6, 892–898.

Archambault, V., Glover, D.M., 2009. Polo-like kinases: conservation and divergence in
their functions and regulation. Nat. Rev. Mol. Cell. Biol. 10, 265–275.

Barr, F.A., Sillje, H.H., Nigg, E.A., 2004. Polo-like kinases and the orchestration of cell
division. Nat. Rev. Mol. Cell. Biol. 5, 429–440.

Bettencourt-Dias, M., Rodrigues-Martins, A., Carpenter, L., Riparbelli, M., Lehmann, L.,
Gatt, M.K., Carmo, N., Balloux, F., Callaini, G., Glover, D.M., 2005. SAK/PLK4 is
required for centriole duplication and flagella development. Curr. Biol. 15,
2199–2207.

Budirahardja, Y., Gonczy, P., 2008. PLK-1 asymmetry contributes to asynchronous cell
division of C. elegans embryos. Development 135, 1303–1313.

Budirahardja, Y., Gonczy, P., 2009. Coupling the cell cycle to development. Development
136, 2861–2872.

Cheng, K.Y., Lowe, E.D., Sinclair, J., Nigg, E.A., Johnson, L.N., 2003. The crystal structure of
the human polo-like kinase-1 polo box domain and its phospho-peptide complex.
EMBO J. 22, 5757–5768.

Chi, Y.H., Haller, K., Ward, M.D., Semmes, O.J., Li, Y., Jeang, K.T., 2008. Requirements for
protein phosphorylation and the kinase activity of polo-like kinase 1 (Plk1) for the
kinetochore function of mitotic arrest deficiency protein 1 (Mad1). J. Biol. Chem.
Choi, E., Choe, H., Min, J., Choi, J.Y., Kim, J., Lee, H., 2009. BubR1 acetylation at
prometaphase is required for modulating APC/C activity and timing of mitosis.
EMBO J. 28, 2077–2089.

Chung, E., Chen, R.H., 2002. Spindle checkpoint requires Mad1-bound and Mad1-free
Mad2. Mol. Biol. Cell 13, 1501–1511.

Davis, F.M., Tsao, T.Y., Fowler, S.K., Rao, P.N., 1983. Monoclonal antibodies to mitotic
cells. Proc. Natl. Acad. Sci. U. S. A. 80, 2926–2930.

Elia, A.E., Cantley, L.C., Yaffe, M.B., 2003a. Proteomic screen finds pSer/pThr-binding
domain localizing Plk1 to mitotic substrates. Science 299, 1228–1231.

Elia, A.E., Rellos, P., Haire, L.F., Chao, J.W., Ivins, F.J., Hoepker, K., Mohammad, D., Cantley,
L.C., Smerdon, S.J., Yaffe, M.B., 2003b. The molecular basis for phosphodependent
substrate targeting and regulation of Plks by the Polo-box domain. Cell 115, 83–95.

Elowe, S., Hummer, S., Uldschmid, A., Li, X., Nigg, E.A., 2007. Tension-sensitive Plk1
phosphorylation on BubR1 regulates the stability of kinetochore microtubule
interactions. Genes Dev. 21, 2205–2219.

Garcia-Alvarez, B., de Carcer, G., Ibanez, S., Bragado-Nilsson, E., Montoya, G., 2007.
Molecular and structural basis ofpolo-like kinase1 substrate recognition: implications
in centrosomal localization. Proc. Natl. Acad. Sci. U. S. A. 104, 3107–3112.

Ghosh, S., Paweletz, N., Schroeter, D., 1993. Failure of centromere separation leads to
formation of diplochromosomes in next mitosis in okadaic acid treated HeLa cells.
Cell Biol. Int. 17, 949–952.

Giet, R., Glover, D.M., 2001. Drosophila aurora B kinase is required for histone H3
phosphorylation and condensin recruitment during chromosome condensation
and to organize the central spindle during cytokinesis. J. Cell Biol. 152, 669–682.

Gimenez-Abian, J.F., Sumara, I., Hirota, T., Hauf, S., Gerlich, D., de la Torre, C., Ellenberg,
J., Peters, J.M., 2004. Regulation of sister chromatid cohesion between chromosome
arms. Curr. Biol. 14, 1187–1193.

Gisselsson, D., 2008. Classification of chromosome segregation errors in cancer.
Chromosoma 117, 511–519.

Goyanes, V.J., Schvartzman, J.B., 1981. Insights on diplochromosome structure and
behaviour. Chromosoma 83, 93–102.

Gumireddy, K., Reddy, M.V., Cosenza, S.C., Boominathan, R., Baker, S.J., Papathi, N., Jiang,
J., Holland, J., Reddy, E.P., 2005. ON01910, a non-ATP-competitive small molecule
inhibitor of Plk1, is a potent anticancer agent. Cancer Cell 7, 275–286.

Habedanck, R., Stierhof, Y.D., Wilkinson, C.J., Nigg, E.A., 2005. The Polo kinase Plk4
functions in centriole duplication. Nat. Cell Biol. 7, 1140–1146.

Hagting, A., Den Elzen, N., Vodermaier, H.C., Waizenegger, I.C., Peters, J.M., Pines, J.,
2002. Human securin proteolysis is controlled by the spindle checkpoint and
reveals when the APC/C switches from activation by Cdc20 to Cdh1. J. Cell Biol. 157,
1125–1137.

Hardwick, K.G., Murray, A.W., 1995. Mad1p, a phosphoprotein component of the
spindle assembly checkpoint in budding yeast. J. Cell Biol. 131, 709–720.

Hartwell, L.H., Smith, D., 1985. Altered fidelity of mitotic chromosome transmission in
cell cycle mutants of S. cerevisiae. Genetics 110, 381–395.

Hauf, S., Roitinger, E., Koch, B., Dittrich, C.M., Mechtler, K., Peters, J.M., 2005.
Dissociation of cohesin from chromosome arms and loss of arm cohesion during
early mitosis depends on phosphorylation of SA2. PLoS Biol. 3, e69.

Hsu, J.Y., Sun, Z.W., Li, X., Reuben, M., Tatchell, K., Bishop, D.K., Grushcow, J.M., Brame, C.
J., Caldwell, J.A., Hunt, D.F., Lin, R., Smith, M.M., Allis, C.D., 2000. Mitotic
phosphorylation of histone H3 is governed by Ipl1/aurora kinase and Glc7/PP1
phosphatase in budding yeast and nematodes. Cell 102, 279–291.

Jeong, J.Y., Einhorn, Z., Mercurio, S., Lee, S., Lau, B., Mione, M., Wilson, S.W., Guo, S., 2006.
Neurogenin1 is a determinant of zebrafish basal forebrain dopaminergic neurons
and is regulated by the conserved zinc finger protein Tof/Fezl. Proc. Natl. Acad. Sci.
U. S. A. 103, 5143–5148.

Kanda, T., Sullivan, K.F., Wahl, G.M., 1998. Histone-GFP fusion protein enables sensitive
analysis of chromosome dynamics in livingmammalian cells. Curr. Biol. 8, 377–385.

Kang, Y.H., Park, J.E., Yu, L.R., Soung, N.K., Yun, S.M., Bang, J.K., Seong, Y.S., Yu, H.,
Garfield, S., Veenstra, T.D., Lee, K.S., 2006. Self-regulated Plk1 recruitment to
kinetochores by the Plk1-PBIP1 interaction is critical for proper chromosome
segregation. Mol. Cell 24, 409–422.

Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B., Schilling, T.F., 1995. Stages of
embryonic development of the zebrafish. Dev. Dyn. 203, 253–310.

Ko, M.A., Rosario, C.O., Hudson, J.W., Kulkarni, S., Pollett, A., Dennis, J.W., Swallow, C.J.,
2005. Plk4 haploinsufficiency causes mitotic infidelity and carcinogenesis. Nat.
Genet. 37, 883–888.

Kumada, K., Yao, R., Kawaguchi, T., Karasawa, M., Hoshikawa, Y., Ichikawa, K., Sugitani,
Y., Imoto, I., Inazawa, J., Sugawara, M., Yanagida, M., Noda, T., 2006. The selective
continued linkage of centromeres from mitosis to interphase in the absence of
mammalian separase. J. Cell Biol. 172, 835–846.

Lane, H.A., Nigg, E.A., 1996. Antibody microinjection reveals an essential role for human
polo-like kinase 1 (Plk1) in the functional maturation of mitotic centrosomes. J. Cell
Biol. 135, 1701–1713.

Lee, H., Kimelman, D., 2002. A dominant-negative form of p63 is required for epidermal
proliferation in zebrafish. Dev. Cell 2, 607–616.

Lee, K.S., Grenfell, T.Z., Yarm, F.R., Erikson, R.L., 1998. Mutation of the polo-box disrupts
localization and mitotic functions of the mammalian polo kinase Plk. Proc. Natl.
Acad. Sci. U. S. A. 95, 9301–9306.

Lee, H., Trainer, A.H., Friedman, L.S., Thistlethwaite, F.C., Evans, M.J., Ponder, B.A.,
Venkitaraman, A.R., 1999. Mitotic checkpoint inactivation fosters transformation in
cells lacking the breast cancer susceptibility gene, Brca2. Mol. Cell 4, 1–10.

Lee, K.S., Park, J.E., Asano, S., Park, C.J., 2005. Yeast polo-like kinases: functionally
conserved multitask mitotic regulators. Oncogene 24, 217–229.

Lenart, P., Petronczki, M., Steegmaier, M., Di Fiore, B., Lipp, J.J., Hoffmann, M., Rettig, W.J.,
Kraut, N., Peters, J.M., 2007. The small-molecule inhibitor BI 2536 reveals novel
insights into mitotic roles of polo-like kinase 1. Curr. Biol. 17, 304–315.

http://dx.doi.org/10.1016/j.ydbio.2010.06.004


48 K. Jeong et al. / Developmental Biology 345 (2010) 34–48
Lindon, C., Pines, J., 2004. Ordered proteolysis in anaphase inactivates Plk1 to contribute
to proper mitotic exit in human cells. J. Cell Biol. 164, 233–241.

Liu, X., Lei, M., Erikson, R.L., 2006. Normal cells, but not cancer cells, survive severe Plk1
depletion. Mol. Cell. Biol. 26, 2093–2108.

Llamazares, S., Moreira, A., Tavares, A., Girdham, C., Spruce, B.A., Gonzalez, C., Karess, R.
E., Glover, D.M., Sunkel, C.E., 1991. polo encodes a protein kinase homolog required
for mitosis in Drosophila. Genes Dev. 5, 2153–2165.

Losada, A., Hirano, M., Hirano, T., 2002. Cohesin release is required for sister chromatid
resolution, but not for condensin-mediated compaction, at the onset of mitosis.
Genes Dev. 16, 3004–3016.

Lu, L.Y., Wood, J.L., Minter-Dykhouse, K., Ye, L., Saunders, T.L., Yu, X., Chen, J., 2008. Polo-
like kinase 1 is essential for early embryonic development and tumor suppression.
Mol. Cell. Biol. 28, 6870–6876.

Mundt, K.E., Golsteyn, R.M., Lane, H.A., Nigg, E.A., 1997. On the regulation and function
of human polo-like kinase 1 (PLK1): effects of overexpression on cell cycle
progression. Biochem. Biophys. Res. Commun. 239, 377–385.

Nasmyth, K., 2002. Segregating sister genomes: the molecular biology of chromosome
separation. Science 297, 559–565.

Nasmyth, K., 2005. How do so few control so many? Cell 120, 739–746.
Nasmyth, K., Haering, C.H., 2009. Cohesin: its roles and mechanisms. Annu. Rev. Genet.

43, 525–558.
Nilsson, J., Yekezare, M., Minshull, J., Pines, J., 2008. The APC/C maintains the spindle

assembly checkpoint by targeting Cdc20 for destruction. Nat. Cell Biol.
Ohkura, H., Hagan, I.M., Glover, D.M., 1995. The conserved Schizosaccharomyces pombe

kinase plo1, required to form a bipolar spindle, the actin ring, and septum, can drive
septum formation in G1 and G2 cells. Genes Dev. 9, 1059–1073.

Peters, J.M., 2006. The anaphase promoting complex/cyclosome: amachine designed to
destroy. Nat. Rev. Mol. Cell. Biol. 7, 644–656.

Peters, J.M., Tedeschi, A., Schmitz, J., 2008. The cohesin complex and its roles in
chromosome biology. Genes Dev. 22, 3089–3114.

Petronczki, M., Lenart, P., Peters, J.M., 2008. Polo on the rise-from mitotic entry to
cytokinesis with Plk1. Dev. Cell 14, 646–659.

Qian, Y.W., Erikson, E., Li, C., Maller, J.L., 1998. Activated polo-like kinase Plx1 is required
at multiple points during mitosis in Xenopus laevis. Mol. Cell. Biol. 18, 4262–4271.

Qian, Y.W., Erikson, E., Taieb, F.E., Maller, J.L., 2001. The polo-like kinase Plx1 is required
for activation of the phosphatase Cdc25C and cyclin B-Cdc2 in Xenopus oocytes.
Mol. Biol. Cell 12, 1791–1799.

Rivers, D.M., Moreno, S., Abraham,M., Ahringer, J., 2008. PAR proteins direct asymmetry
of the cell cycle regulators Polo-like kinase and Cdc25. J. Cell Biol. 180, 877–885.

Shepard, J.L., Amatruda, J.F., Stern, H.M., Subramanian, A., Finkelstein, D., Ziai, J., Finley,
K.R., Pfaff, K.L., Hersey, C., Zhou, Y., Barut, B., Freedman, M., Lee, C., Spitsbergen, J.,
Neuberg, D., Weber, G., Golub, T.R., Glickman, J.N., Kutok, J.L., Aster, J.C., Zon, L.I.,
2005. A zebrafish bmyb mutation causes genome instability and increased cancer
susceptibility. Proc. Natl. Acad. Sci. U. S. A. 102, 13194–13199.

Shepard, J.L., Amatruda, J.F., Finkelstein, D., Ziai, J., Finley, K.R., Stern, H.M., Chiang, K.,
Hersey, C., Barut, B., Freeman, J.L., Lee, C., Glickman, J.N., Kutok, J.L., Aster, J.C., Zon, L.
I., 2007. A mutation in separase causes genome instability and increased
susceptibility to epithelial cancer. Genes Dev. 21, 55–59.

Sironi, L., Melixetian, M., Faretta, M., Prosperini, E., Helin, K., Musacchio, A., 2001. Mad2
binding to Mad1 and Cdc20, rather than oligomerization, is required for the spindle
checkpoint. EMBO J. 20, 6371–6382.

Smith, M.R., Wilson, M.L., Hamanaka, R., Chase, D., Kung, H., Longo, D.L., Ferris, D.K.,
1997. Malignant transformation of mammalian cells initiated by constitutive
expression of the polo-like kinase. Biochem. Biophys. Res. Commun. 234,
397–405.

Steegmaier, M., Hoffmann, M., Baum, A., Lenart, P., Petronczki, M., Krssak, M., Gurtler, U.,
Garin-Chesa, P., Lieb, S., Quant, J., Grauert, M., Adolf, G.R., Kraut, N., Peters, J.M.,
Rettig, W.J., 2007. BI 2536, a potent and selective inhibitor of polo-like kinase 1,
inhibits tumor growth in vivo. Curr. Biol. 17, 316–322.

Stratmann, R., Lehner, C.F., 1996. Separation of sister chromatids in mitosis requires the
Drosophila pimples product, a protein degraded after the metaphase/anaphase
transition. Cell 84, 25–35.

Sumara, I., Vorlaufer, E., Stukenberg, P.T., Kelm, O., Redemann, N., Nigg, E.A., Peters, J.M.,
2002. The dissociation of cohesin from chromosomes in prophase is regulated by
Polo-like kinase. Mol. Cell 9, 515–525.

Sunkel, C.E., Glover, D.M., 1988. polo, a mitotic mutant of Drosophila displaying
abnormal spindle poles. J. Cell Sci. 89 (Pt 1), 25–38.

Takai, N., Hamanaka, R., Yoshimatsu, J., Miyakawa, I., 2005. Polo-like kinases (Plks) and
cancer. Oncogene 24, 287–291.

Tang, J., Erikson, R.L., Liu, X., 2006. Ectopic expression of Plk1 leads to activation of the
spindle checkpoint. Cell Cycle 5, 2484–2488.

Taylor, S., Peters, J.M., 2008. Polo and Aurora kinases: lessons derived from chemical
biology. Curr. Opin. Cell Biol. 20, 77–84.

Urasaki, A., Morvan, G., Kawakami, K., 2006. Functional dissection of the Tol2
transposable element identified the minimal cis-sequence and a highly repetitive
sequence in the subterminal region essential for transposition. Genetics 174,
639–649.

van de Weerdt, B.C., Littler, D.R., Klompmaker, R., Huseinovic, A., Fish, A., Perrakis, A.,
Medema, R.H., 2008. Polo-box domains confer target specificity to the Polo-like
kinase family. Biochim. Biophys. Acta 1783, 1015–1022.

Watanabe, Y., Kitajima, T.S., 2005. Shugoshin protects cohesin complexes at
centromeres. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360, 515–521 (discussion 521).


	Inhibition of Plk1 induces mitotic infidelity and embryonic growth defects in developing zebrafish embryos
	Introduction
	Materials and methods
	Zebrafish
	Cloning of zebrafish plk1, Plk2, Plk3, and Mad1
	In situ hybridization
	Injection of morpholinos (MOs) and sense RNAs
	Western blotting
	Antibodies and Immunofluorescence assays in whole embryos
	Metaphase chromosome spreads of zebrafish embryos
	Time course measurement of mitotic entry and mitotic exit
	Apoptosis assay
	MPM-2 staining and flow cytometry
	Analysis of the spindle assembly checkpoint �activation by Mad1 localization
	Generation of H2B-GFP transgenic zebrafish
	Time-lapse microscopy of live embryos
	In vitro kinase assay

	Results
	Expression of plk1 in the proliferating regions of zebrafish embryos
	Depletion of Plk1 expression results in growth defects and cell death during zebrafish development
	Knockdown expression of Plk1 results in prometaphase arrest
	Knockdown of Plk1 leads to centrosome defects, congression errors, and impaired spindle assembly
	Plk1 knockdown results in chromosome instability in zebrafish embryos
	Live-imaging reveals that Plk1 is essential, whereas Plk2 and Plk3 are dispensable in mitosis of living embryos
	BI 2536, a Plk1 inhibitor developed in cancer cell lines, blocks mitotic progression in developing zebrafish embryos
	Imbalanced Plk1 activity leads to mitotic infidelity

	Discussion
	Mitosis and development
	Plk1 depletion and the activation of SAC
	Visualizing mitosis in developing embryos
	Plk1 is essential, but Plk2 and Plk3 are dispensable, in �zebrafish embryogenesis

	Acknowledgments
	Supplementary data
	References




