Title: Lipid-mediated conformational equilibrium of gap junction intercellular channels

Abstract

Connexin family proteins assemble into hexameric hemichannels in the cell membrane. The hemichannels dock together between two adjacent membranes to form gap junction intercellular channels (GJCs). The cryo-electron microscopy structures of Cx36 and Cx43 GJCs reveal dynamic equilibrium states of various channel conformations in phospholipid nanodiscs. Individual protomers undergo dramatic conformational changes in N-terminal helix (NTH) and the first transmembrane helix (TM1) creating lateral openings to the membrane and central pores of different diameters. Amphipathic NTHs interact with TM helices to form a hydrophilic pore and thus open the channel. However, the dissociation of pore-lining NTHs from TM helices is strongly induced by cholesterol derivatives resulting in a closed channel with pore-occluding lipids. This study suggests a potential gating model of GJC mediated by lipids and NTHs.