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Microbial symbionts influence animal physiology, evolu-
tion and health in a variety of ways1, yet factors govern-
ing global-scale patterns in diversity of host-associated 

microbes are not fully understood. The largest scale study to date 

found that the primary predictor of microbial diversity was whether 
the sample was host-associated versus free-living. Furthermore, for 
host-associated communities, animal versus plant hosts and gut ver-
sus skin were the strongest predictors of microbial communities1. 
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Animal-associated microbiomes are integral to host health, yet key biotic and abiotic factors that shape host-associated 
microbial communities at the global scale remain poorly understood. We investigated global patterns in amphibian skin bacte-
rial communities, incorporating samples from 2,349 individuals representing 205 amphibian species across a broad biogeo-
graphic range. We analysed how biotic and abiotic factors correlate with skin microbial communities using multiple statistical 
approaches. Global amphibian skin bacterial richness was consistently correlated with temperature-associated factors. We 
found more diverse skin microbiomes in environments with colder winters and less stable thermal conditions compared with 
environments with warm winters and less annual temperature variation. We used bioinformatically predicted bacterial growth 
rates, dormancy genes and antibiotic synthesis genes, as well as inferred bacterial thermal growth optima to propose mecha-
nistic hypotheses that may explain the observed patterns. We conclude that temporal and spatial characteristics of the host’s 
macro-environment mediate microbial diversity.
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This underscores the importance of host-association in shaping a 
unique subset of the earth’s microbes; however, most host micro-
biome studies are from geographically and taxonomically focused 
studies. A predictive framework for these communities at the global 
scale is lacking, but vital for understanding ecology and evolution of 
host-associated microbiomes2, detection of dysbiosis or elucidating 
changes in microbiome functions3.

Generalizable rules for predicting free-living microbial taxa are 
increasingly being explored. For instance, studies have found that 
geographic ranges of environmental bacteria decrease towards the 
equator following Rapoport’s Rule4,5. In addition, composition and 
diversity of environmental microbiomes vary with latitude6–10, and 
are known to be structured by abiotic factors, such as salinity, pH, 
temperature, oxygen and nutrients11–15. Thus, while consistent pat-
terns have been detected for environmental microbes, it is uncertain 
if generalizable rules govern composition of naturally occurring 
host-associated microbiomes. In modern humans, diet and lifestyle 
are important drivers of gut community similarity16, and for mam-
mals broadly, diet and host phylogeny are strong predictors of the 
gut microbiome17,18.

Amphibian skin is a leading model system to explore host-
associated microbial community structure. The skin can be sam-
pled non-destructively, and the need to understand skin microbial 
ecology is hastened by emerging pandemic diseases3,19,20. In recent 
decades, amphibian species have been decimated by the invasive 
fungal pathogens Batrachochytrium dendrobatidis21,22, and more 
recently, Batrachochytrium salamandrivorans23–25. Previous research 
on amphibians from aquatic systems has found that amphibian host 
identity is the strongest predictor of skin-associated bacteria, while 
developmental life stage and environment are secondary predic-
tors26–28. Other studies have found host microhabitat preferences 
and ecological factors best predict amphibian skin microbiomes29,30.  
At a local scale, amphibian skin microbial diversity varies  
temporally31–33 and is reduced when hosts are exposed to habi-
tat destruction, microclimate shifts and captivity34–36. Indeed,  
the research community has generated substantial knowledge  
on microbial communities of particular amphibians3, but typi-
cally has focused on small geographic areas, leaving out analysis  
of climatic variables. While these individual advancements  
are valuable, large global-scale datasets are needed to evaluate how 
environmental versus intrinsic factors mediate composition and 
diversity of amphibian-associated microbiomes. Undeniably, across 
all investigations into host-associated microbiomes, abiotic effects 
at the local scale are typically weak, although often statistically 
detectable, and the influence of climatic variables on microbiomes 
has rarely been reported28,33,37–43.

To explore variables that may influence amphibian skin-associ-
ated microbial communities at the global scale, we used cutaneous 
microbiome data from 2,349 post-metamorphic amphibians. We 
analysed how multiple factors associated with an amphibian’s biol-
ogy, their abiotic and biotic environment, and their biogeography 
related to these communities. Second, we investigated bacterial rich-
ness and composition of the globally distributed, American bullfrog 
(Lithobates catesbeianus), to separate intrinsic host-related effects 
from extrinsic environmental effects shaping the skin microbiome. 
Last, we explored whether our observations agreed with specific, 
non-mutually exclusive mechanistic hypotheses that could account 
for the observed diversity patterns: (1) bacterial relative abundance 
patterns across important bioclimatic predictors will be associated 
with bacterial thermal growth optima44, (2) bacteria with faster 
growth rates, have a competitive advantage over other bacteria and 
thus may reduce bacterial richness45–49, (3) natural environmental 
fluctuations associated with colder winter temperatures could cre-
ate opportunities for bacterial turnover and favour dormancy, thus 
facilitating increased bacterial richness47 and (4) temperature fluc-
tuations may mediate competitive interactions, such as antibiotic 

production by microbes, which will influence microbial diversity48. 
To explore these hypotheses, we integrated bacterial community 
data with information on inferred optimal growth temperatures and 
quantified predicted functions associated with growth rates, dor-
mancy and antibiotic production. Together, these data reveal global 
patterns of amphibian skin microbiomes and provide mechanistic 
insights that deepen our understanding of these communities.

Results
Bioclimate correlates with richness of amphibian skin microbi-
omes. We built linear mixed models (LMMs) for bacterial richness 
(number of bacterial sub-operational taxonomic units, sOTUs) 
and evenness (Simpson’s E), from a combination of biotic and abi-
otic factors including subsets of least-correlated bioclimatic pre-
dictors (Supplementary Table 5). Our preferred LMM (Fig. 1a,b 
and Supplementary Table 7) based on lowest Akaike Information 
Criterion (AICc) value included five bioclimatic variables, as well 
as amphibian species richness, latitude and elevation while control-
ling for four random factors: sequencing centre, host habitat class, 
collection habitat and host phylogeny (as amphibian family). The 
biotic variables, host phylogeny and microhabitat, were not included 
as fixed factors due to their inconsistent and possibly site-driven 
effects (see below). The highest coefficient value corresponded to 
minimum temperature of the coldest month (hereafter referred 
to as Bio6, see Supplementary Table 7). A partial effect analysis  
(Fig. 1b) revealed that bacterial richness negatively related to Bio6, 
as it did in an independent analysis of this variable (Pearson’s 
r = −0.301; P < 0.001). In the multivariate context, that is, control-
ling for the very strong Bio6 effect, richness is predicted to increase 
with mean temperature of driest quarter (Bio9), and to decrease 
with latitude and altitude (Fig. 1b). These variables, however, 
have inverse relationships when analysed independently; richness 
decreased with Bio9 (r = −0.222; P < 0.001) and increased with lati-
tude (r = 0.175; P < 0.001) and elevation (r = 0.188; P < 0.001).

Alternative models included mean annual temperature range 
(Bio7), which showed a positive correlation with bacterial richness 
(Supplementary Tables 7 and 8). Given the high correlation between 
these and many other bioclimatic variables (Supplementary  
Table 5), these results suggest that richness of amphibian skin 
microbiomes is higher in more seasonal environments with colder 
winter temperatures. The preferred LMM for Simpson’s E had very 
low R2 values for all variables (Supplementary Table 10), confirming 
that evenness was not strongly influenced by any of the predictors 
included in our study.

Path analyses provided additional support to our central finding 
that Bio6 had a strong effect on richness, indicating that (1) eleva-
tion strongly influenced Bio6, but only had weak direct effects on 
bacterial richness and (2) Bio6 influenced host richness and host 
phylogeny, but these two predictors had comparatively weak direct 
effects on bacterial richness (Fig. 1c,d).

Bioclimate explains abundance of bacterial taxa in the amphib-
ian microbiome. Bacterial community similarity based on sOTUs 
was only marginally influenced by bioclimate (Table 1), but at phy-
lum level, the relative abundance of Proteobacteria increased, and 
that of several other bacterial phyla decreased with Bio6 (Fig. 2a). 
We used binomial mixed models to evaluate the effect of bioclimate 
on the 27 most abundant bacterial genera (greater than 0.5% rela-
tive abundance). Eighteen of these genera were negatively correlated 
with Bio6 (that is, increased in relative abundance with colder tem-
peratures) (Fig. 2b). The standard deviation in slopes among genera 
was estimated to be 0.7774, and the main effect of Bio6 overlapped 
zero (maximum likelihood estimate: −0.4921, s.e.m. = 0.3114, 
Z = −1.580, P = 0.114). The effects of Bio6 also varied with latitude, 
with an estimated standard deviation of 2.910 (Supplementary Fig. 5).  
We found that the relative abundance of many bacterial genera 
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across the Bio6 gradient was associated with their thermal optima 
(predicted from culture databases of other species in the same gen-
era; see Methods) and therefore probably influenced by bacterial 
thermo-physiological constraints (see Supplementary Results).

Influences of host phylogeny and microhabitat on microbiome 
richness. Biotic factors, included in LMMs as random factors, con-
tributed to explaining richness of amphibian skin-associated micro-
biomes, but revealed only limited globally applicable patterns. This 
is apparent from the strong effect of host microhabitat preference 
(although lower in coefficient value than bioclimatic factors) when 
included as a fixed effect (Supplementary Table 13). A detailed 

analysis of host microhabitat preference suggested this was caused 
by idiosyncratic effects in different geographical regions (Fig. 3; 
see Supplementary Fig. 6 for a more fine-scale categorization). For 
example, aquatic frogs had low sOTU richness in the USA but high 
values in Panama. As one moderately consistent pattern, arboreal 
amphibians in five countries had on average lower bacterial richness 
than terrestrial amphibians, and these differences were statistically 
significant in three countries (Brazil, Madagascar, Panama; P < 0.05 
in false discovery rate-corrected Wilcoxon U-tests; Fig. 3).

Despite a very strong effect of main host clades (families) in 
response screening (Supplementary Table 4), host phylogeny based 
on a nMDS proxy, was not a top predictor of bacterial richness when 
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Fig. 1 | Richness of amphibian skin microbiomes is associated with bioclimate. a, Plot of raw data for richness versus non-rescaled values of minimum 
temperature of coldest month (Bio6), separately for bullfrogs (orange) and non-bullfrogs (purple), showing similar trends for these subsets. Inset: partial 
effects plot from the preferred LMM, showing predicted richness values for rescaled Bio6. Grey shading represents 95% confidence intervals, and the error 
bars associated with each point represent standard deviations for each locality. b, Estimated effect sizes for all included fixed factors in the preferred model. 
c, Path models confirming a strong effect of Bio6 and visualizing how biotic factors, host (amphibian) phylogeny and richness, are equally influenced by 
bioclimate while having no or only weak effects on bacterial richness. Estimates of standardized path coefficients with their associated standard errors  
were derived by maximum Wishart likelihood (500 iterations). Black arrows indicate statistically significant effects (P < 0.05) determined from the path 
model analyses; the width of the arrows is proportional to effect size.

Table 1 | Permutational multivariate analysis of variance (PERMANOVA) models of beta diversity, showing influence of selected 
predictors on weighted Unifrac distances among amphibian cutaneous microbiomes

Model A Model B

d.f. Sum of sqs R2 F Sum of sqs R2 F

Bio4 (temp. seasonality) 1 1.06 0.00278 8.019 0.994 0.0035 7.460

Bio6 (min. temp. coldest month) 1 1.81 0.00475 13.695 1.219 0.00429 9.147

Bio7 (annual temp. range) 1 1.03 0.0027 7.782 1.114 0.00392 8.364

Bio9 (mean temp. driest quarter) 1 0.84 0.0022 6.323 0.461 0.00162 3.462

Bio12 (annual precip.) 1 2.62 0.00688 19.822 2.723 0.00957 20.435

Bio14 (precip. driest month) 1 4.15 0.01089 31.375 3.922 0.01379 29.437

Bio18 (precip. warmest quarter) 1 1.42 0.00372 10.714 1.86 0.00654 13.960

Amphibian richness 1 0.66 0.00175 5.029 0.453 0.00159 3.402

Elevation 1 1.44 0.00379 10.915 1.487 0.00523 11.162

Latitude (absolute value) 1 1.59 0.00417 12.008 1.099 0.00387 8.251

Habitat class 4 7.01 0.01842 13.268 5.775 0.02031 10.835

Amphibian family/host phylogeny nMDS 26/1 17.99 0.04727 5.237 1.4 0.00492 10.504

All continuous variables were rescaled before analysis. Models that differ by the host phylogeny proxy included: amphibian family in model A, host phylogeny non-metric multidimensional scaling (nMDS) 
variable in model B. PERMANOVA-based P values of F are <0.001 for both models and all predictors.
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included in LMMs (Supplementary Table 8). At the global scale, 
however, family level taxonomy was closely linked to collection site 
and therefore its effects could not be reliably disentangled from bio-
climatic effects.

Bullfrogs mirror native amphibians in microbiome richness 
and beta diversity. The American bullfrog is globally distributed, 
allowing for the unique opportunity to explore skin microbiomes 
across disparate biogeographic regions and to compare bullfrogs 
to other co-occurring species in dissimilar regions. For this pur-
pose, we collected 139 American bullfrog samples from Brazil, 
Japan, South Korea and the USA. Similar to our findings with the 
full dataset, American bullfrogs had higher bacterial richness in 
localities with lower minimum temperature of the coldest month 
(Bio6) (Fig. 1a). It is important to note, however, that bullfrog-
specific data did not span the full range of the Bio6 gradient.  
To examine host effects on patterns of beta diversity we calcu-
lated unweighted and weighted Unifrac distances between micro-
biomes of American bullfrogs and other sympatric amphibians 
and compared these to distances between allopatric populations 
of American bullfrogs. Comparisons of both distance metrics 
showed the same pattern. We found that pairwise distances among 
bullfrogs and other sympatric amphibians were smaller than pair-
wise distances among bullfrogs from different sites (Weighted 
Unifrac, Monte-Carlo approximation; Z = 11.85, P < 0.001  
(Fig. 2c)). Additionally, pairwise distances among allopatric 
bullfrogs were only marginally different from pairwise distances 
among allopatric non-bullfrog samples. (Z = 3.07, P < 0.001;  
Fig. 2c). Analysis of core communities revealed that no sOTUs 
were shared among American bullfrogs across continents at ≥70%. 

Indeed, across the full dataset no sOTUs were shared amongst 90 
or 100% of the samples, and only one sOTU was shared among 
80% of samples (a Klebsiella sp.). For the 27 most abundant bacte-
rial genera (Fig. 2b), the effect of Bio6 in binomial mixed mod-
els was marginally correlated between the dataset comprising all 
host taxa and the bullfrog dataset (Pearson’s product-moment 
correlation −0.368, 95% confidence interval of −0.656 and 0.014, 
P = 0.0592; Supplementary Fig. 11). While controlling for species-
specific effects, these bullfrog-specific results support that biocli-
matic and site-specific factors best explain variation in amphibian 
skin-associated microbial diversity.

Bacterial genes may explain correlation of bacterial richness with 
bioclimate. We used Phylogenetic Investigation of Communities 
by Reconstruction of Unobserved States (PICRUSt) to explore 
potential hypotheses that could explain observed patterns of bac-
terial richness across bioclimatic gradients. This tool predicts the 
functional profile of the entire microbiome through matching 16S 
amplicon sequences to known bacterial genome data. It is there-
fore important to note the intrinsic limitations of this predictive 
framework. On average, 81% (±18% s.d.) of the community was 
mapped to the Greengenes database required for PICRUSt analyses. 
Furthermore, amphibian skin microbiomes had suitable Nearest 
Sequence Taxon Index values (see Methods) validating their use in 
PICRUSt analyses. Using these data, we analysed average predicted 
rRNA copy number and relative abundance of two functional cat-
egories: (1) dormancy-associated functions, including sporulation, 
toxin, antitoxin and resuscitation pathways47,49, and (2) antibiotic 
synthesis function, including carbohydrate and lipid metabolism, 
terpenoid backbone biosynthesis, sterol biosynthesis, aromatic 
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amino acid metabolism and biosynthesis of secondary metabo-
lites50. All the aforementioned gene pathways are well studied46,51,52.

Bacterial taxa are known to code 1–15 ribosomal (rRNA) oper-
ons in their genome. Commonly referred to as rRNA copy number, 
this operon number is a robust and well-studied trait of bacteria that 
relates to bacterial growth rate and efficiency48,49. Previously, rRNA 
copy number has been identified as an important variable explain-
ing community composition of amphibian skin bacteria during 
amphibian development53. We found that average predicted rRNA 
copy number was positively correlated with Bio6 (that is, greater 
in warmer climates, Kendall rank, r = 0.21, P < 0.0001), and that 
dormancy-associated functional-gene abundance was negatively 
correlated with Bio6 (that is greater in colder climates, Kendall rank 
correlation, r = −0.27, P < 0.0001; Fig. 4). Last, gene abundance of 
antibiotic synthesis pathways was also negatively correlated with 
Bio6 (Kendall rank, r = −0.23, P < 0.0001; Supplementary Fig. 8).

Discussion
This study expands on previous research by examining macro-eco-
logical patterns of amphibian skin bacteria. Our data revealed that 
temperature-associated factors—in particular, cold winter tempera-
tures and seasonality—consistently correlate with bacterial richness 
and to a lesser extent with bacterial composition on amphibian skin 
at the global scale. Our results reflect an inverse latitudinal richness-
effect given that a simple regression analysis indicated decreasing 
richness at lower latitudes. This result probably occurs because 
temperature-related bioclimatic variables, such as Bio6, and latitude 
were highly correlated with each other across sampling localities. 
This pattern is in contrast with what is observed for most free-living 
macro-eukaryotes, including amphibians51,52, but mirrors findings 
of bacterial communities from other environments6,8–10,54. Only 
rarely have previous studies on bacterial communities found a con-
ventional latitudinal effect (higher diversity at lower latitudes7,55). 
For amphibians, we expect that most skin bacteria are environmen-
tally acquired56,57. Thus, the observed inverse latitudinal richness-
effect could be a function of diversity patterns of environmental 

substrates54. While there are several limitations to our design, such 
as lack of environmental substrate samples and variability in sam-
pling date, our data provide evidence for a skin-associated diversity 
gradient in part explained by the latitude-associated temperature 
regime. This finding is further supported by analyses of American 
bullfrogs, which are globally distributed.

Our study also demonstrates that amphibian microhabitat usage 
influences skin bacterial richness, and that bacterial composition 
differs among coarse host taxonomic categories; that is, amphib-
ian families. While at the local scale, previous studies have demon-
strated host-specific patterns in amphibian skin bacteria28,58–60, the 
nMDS proxy for amphibian phylogeny herein was less consistently 
associated with bacterial richness and composition. A low phylo-
genetic effect on microbiome composition was also found in an 
in-depth study of amphibian fauna sampled across Madagascar29. 
Amphibian skin physiology and secretions are partly conserved 
phylogenetically, but perhaps the most influential factors for the 
skin microbiome are discontinuous across the amphibian tree of 
life. For instance, multiple unrelated amphibian families have been 
defined on the basis of important ecomorphological traits such as 
arboreality (Hylidae, Rhacophoridae, Hyperoliidae) that may influ-
ence microbiome characteristics of constituent species.

Congruent with other studies29,30, we found differences in micro-
bial richness among frogs occupying different microhabitats, but 
these were only partly consistent across this dataset (Fig. 3). For var-
ious countries and latitudes, our data suggest that skin microbiomes  
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in arboreal hosts are less rich than in terrestrial species, whereas 
microbiome richness on aquatic hosts varied substantially, as pre-
viously seen in Central American amphibians58. It is possible that 
rinsing transient microbes off arboreal species is more efficacious 
than rinsing microbes off terrestrial species, and/or the higher 
diversity on terrestrial species reflects higher diversity of the soil 
environment that they inhabit. Alternatively, amphibian ecol-
ogy could influence skin-shedding rates, secretion of skin defence 
compounds and skin structure, which in turn affect bacterial rich-
ness. These additional factors may correlate with species identity 
or major amphibian clades, such as families. In light of these inde-
pendent effects of microhabitat, host species and phylogeny on the 
amphibian cutaneous microbiome, it is remarkable that the effects 
of bioclimate are relatively consistent at the global scale.

We found only a single prevalent bacterium (Klebsiella61) in 
80% of our samples and no core community for American bull-
frogs across continents. This finding supports the hypothesis that 
amphibian skin microbiomes are strongly influenced by local bac-
terial source communities and abiotic conditions, including tem-
perature. Amphibians can actively thermoregulate to some degree, 
such as sitting on a warm rock; however, this capacity is unlikely to 
outweigh the thermal environment on a global scale.

Amphibian tissues provide a rich source of resources for microbes. 
However, as ectotherms, they do not offer protection from seasonal 
temperature changes. Our results suggest that skin-associated bac-
teria of ectotherms are under environmental selection and that in 
cooler climates they are selected on to withstand temperatures out-
side of their growth range (for example, dormancy in cold climates). 
We hypothesized that natural environmental fluctuations associated 
with cold winter temperatures could favour dormancy and promote 
higher diversity by allowing unique bacterial taxa to become active 
during different times of the year and by allowing bacteria to take 
advantage of continual microbial turnover. Dormancy, a character-
istic of many bacteria, has been comparatively well studied and is 
highlighted as a factor influencing bacterial biogeography13,49,62. In 
our hypotheses about why we observe an inverse latitudinal diver-
sity gradient, we assert that a combination of bacterial character-
istics in these communities may explain this pattern. First, higher 
predicted rRNA copy numbers, which signifies fast growth, were 
found in warm, stable thermal environments, suggesting that taxa 
in these environments are able to out-grow and potentially exclude 
other bacterial taxa (Fig. 4). This result is linked to a reduction in 
the richness of bacteria on the skin of amphibians in these environ-
ments. Second, we hypothesized that a periodic resurgence from 
the microbial seed bank on amphibian skin, facilitated through dor-
mancy, may bring about higher richness on amphibians inhabiting 
regions with seasonal thermal changes. In support of this hypoth-
esis, we found that dominant bacterial genera and abundance of 
dormancy genes found on amphibian skin were non-randomly dis-
tributed across a temperature (Bio6) gradient (Fig. 4). Indeed, dor-
mant or slow-growing bacteria are more prevalent in environments 
with seasonal temperature variation, which probably affects nutri-
ent or growth conditions49. This hypothesis is consistent with our 
finding that bacteria with lower thermal growth optima are more 
abundant on amphibians in regions with colder winter tempera-
tures (see Supplementary Results). Importantly, estimating thermal 
optima of bacterial genera within our dataset from databases of bac-
terial thermal optima is not a direct comparison, and thus does not 
match the exact conditions of amphibian skin. Further details on 
these limitations are discussed in the Supplementary Information. 
Alternatively, or as a compounding effect, chemical disturbances 
(for example, antibiotic synthesis) in these cooler environments may 
also play a role in shaping global diversity patterns of bacterial sym-
bionts of ectotherms63. We hypothesized that moderate disturbance 
via chemical antibiotic production from microbiomes may create 
a more heterogeneous landscape, facilitating open niches, niche 

specialization and ultimately greater microbial diversity. Again, we 
found that predicted antibiotic synthesis gene abundances found on 
amphibian skin were non-randomly distributed across the Bio6 gra-
dient (Supplementary Fig. 8). Direct measurements of functional 
genes are required to confirm our results obtained from PICRUSt 
predicted gene functions.

Future studies may extend these findings in a variety of ways. 
As new datasets of both endotherms and ectotherms become avail-
able, a meta-analysis including both groups could provide greater 
insight into either the generality or specificity of our findings. 
For example, a strong effect of bioclimate on skin microbiomes 
of endotherms is unlikely given that temperature fluctuations 
in cold environments are less extreme for microbiomes associ-
ated with most endothermic animals, underscoring the impor-
tance of studying a broad diversity of animal taxa to understand 
global host-associated diversity patterns. Future studies could also 
explore the influence of bioclimate on host-associated microbial 
communities both within and across vertebrate and invertebrate 
groups. As microbial genomic databases become better equipped 
and sequencing of bacterial gene content from whole communities 
becomes more commonplace, future work could address hypoth-
eses related to ours with sample-specific microbial genomic data. 
Experimental translocation and temperature manipulations of 
amphibians could also test for selection of amphibian-associated 
microbial phenotypes and genotypes.

Our results indicate that amphibian skin bacterial composition 
changes across a bioclimatic gradient, and that bacterial richness 
per host individual decreases towards warmer, more stable ther-
mal environments. However, due to the compositional nature of 
sequence data, we acknowledge that changes in abundance of spe-
cific bacterial taxa across bioclimatic gradients are influenced by 
changes of other bacterial taxa. For this reason, our results focus 
primarily on the global richness patterns across climatic gradients. 
Future sequencing projects could include a DNA spike-in during 
sequencing, which enables better estimation of absolute microbial 
abundances for among-sample comparisons64.

Bioclimatic variables, in particular, minimum temperature of 
the coldest month and seasonal temperature variation, consistently 
correlated with cutaneous microbiomes at the global scale. The 
importance of this aspect of bioclimate in shaping host-associated 
microbiomes was previously unknown. Our data help explain fun-
damental questions of microbial biogeographical diversity and offer 
insights into how climatic variation may affect host microbiomes. 
In the face of rapid environmental change around the globe, cli-
matic changes may alter host microbiomes, which, in turn, could 
have consequences on maintenance of host health and selection and 
evolution of amphibians.

Methods
Summary of the metanalysis and newly sampled amphibians. We assembled 
samples from 2,349 individual post-metamorphic amphibians, comprising 27 
amphibian families (205 species) collected across 13 countries (five continents) 
(including 538 samples newly sequenced for this study). A summary of amphibian 
sampling effort across continents is provided in Supplementary Table 1 and 
Supplementary Fig. 1. All amphibians were swabbed using sterile swabs and DNA 
directly extracted from these. The V4 region of the 16S rRNA gene was amplified 
with barcoded primers (515f–806r) and sequenced on Illumina MiSeq platforms 
(details in the Supplementary Information). Raw sequence data was compiled from 
newly sequenced datasets and from published studies (Supplementary Table 1). 
Sequences were quality filtered and further analysed in Quantitative Insights into 
Microbial Ecology (QIIME)65. sOTUs were determined using the deblur workflow66 
(https://github.com/biocore/deblur). After filtering and decontamination 
procedures, the dataset comprised 45,932,673 reads and an average of 19,554 reads 
per sample. Samples were subsequently rarefied at 2,500 reads per sample and had 
an average of 277 sOTUs.

For analyses, these samples were subdivided into different subsets: (1) the full 
dataset with samples from all 2,349 amphibian individuals, and (2) a dataset of 
1,801 individuals for which host phylogenetic data were available (and excluding 
American bullfrogs). Additionally, an American bullfrog dataset, comprising 
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139 samples of this species ranging from 29.5° S–42.4° N latitude, was analysed 
separately to control for amphibian species identity while exploring biogeographic 
predictors of skin bacterial communities. We also compiled a standardized dataset 
with 828 individuals, representing a more even sampling of 7–10 samples per host 
species, for calculating core communities.

Richness analysis of amphibian skin bacterial communities. To analyse the 
correlation of abiotic and biotic factors with alpha diversity of amphibian skin 
microbiomes we used QIIME to calculate two response variables, number of 
observed sOTUs representing community richness and Simpson’s E representing 
community evenness. For abiotic predictors, we chose 19 bioclimatic variables as 
well as absolute latitude and elevation. In addition, we included biotic variables, 
such as amphibian species richness and host phylogeny. Furthermore, we 
controlled for the effect of selected categorical variables including sequencing 
centre, host microhabitat preference and collection habitat of hosts. A full 
discussion of predictor variables is provided in the Supplementary Methods (also 
see Supplementary Table 3). Bioclimatic data was extracted from 1-km spatial 
resolution climate surfaces for global land areas64. Host richness was approximated 
by extracting amphibian richness data from available maps at 10 × 10 km 
resolution67. Host phylogeny was alternatively represented by (1) a categorical 
variable using amphibian family as a taxonomic proxy, or (2) evolutionary 
divergences, a variable obtained by nMDS. Evolutionary divergences among host 
species were calculated as patristic phylogenetic distances from an ultrametric 
timetree recovered from the timetree.org database68. To include host phylogeny in 
models we created a nMDS proxy for host phylogeny, constrained to one dimension, 
on the patristic distance matrix (Kruskal’s Stress 1 = 0.023). nMDS values (one-
dimensional-ordination explaining 20% of the variation) showed no outliers, such 
that closely related families have similar values (Supplementary Fig. 12).

To assess the effect of all predictors on richness and evenness of bacterial 
communities (number of sOTUs), we first used Response Screening adjusted 
for false discovery rate in JMP 13.0 (SAS Institute). Most bioclimatic predictor 
variables were strongly correlated, and we therefore applied various strategies to 
compile sets of variables that were strong predictors of the data, least-correlated, 
or potentially biologically informative on the basis of a priori assumptions. The 
selected subsets of variables were implemented in alternative LMMs in R using 
the lme4 package69,70 and then evaluated on the basis on AICc, R2 and variance 
inflation factor values.

Coefficient values for all predictors were obtained through the fixef() function 
in the nlme package. The sjPlot package was used to created model estimate 
and effect plots (Fig. 1 and Supplementary Fig. 2)71. All statistical significance is 
reported using a two-tailed approach. See Supplementary Information for a full 
description of model selection procedures, predictor variables included in each 
model and coefficients and variance inflation factor values for each variable.

To understand directionality and confirm the relative strength of predictors 
selected in our LMM model selection procedures, we built six ecologically 
meaningful path models that included a combination of variables directly or 
indirectly affecting sOTU richness: Bio6, Bio7 and elevation, as well as two 
biotic variables, host phylogeny and amphibian species richness (Fig. 1d,e and 
Supplementary Fig. 3). These confirmatory models were primarily designed to 
better understand the interactions of the predictor variable found to be most 
influential (Bio6) with biotic predictors; that is, host richness and host phylogeny. 
Path models with the response variable Bio6 averaged by collection site were 
also performed (Supplementary Fig. 4). From a correlation matrix, estimates of 
standardized path coefficients with their associated standard errors were derived 
by maximum Wishart likelihood (500 iterations), allowing the identification of 
significant paths. Latent (unmeasured ‘u’) variables, corresponding to variance 
attributed to error and any unmeasured predictors, were estimated for each 
response variable in the model.

Compositional analysis of amphibian skin microbiomes. A phylum-level 
taxonomic summary of amphibian skin microbiomes by host species (n = 205 
species) within each country is provided in Supplementary Table 2. We used 
QIIME to calculate beta diversity as weighted Unifrac distances. Factors driving 
patterns in beta diversity were investigated with PERMANOVA72 estimating 
Pseudo-F and P values with marginal effects.

To understand differentiation of American bullfrogs across sites relative to 
their differentiation from sympatric amphibians we selected samples from only 
those locations from which bullfrog data were available. We used the make_
distance_boxplots.py script in QIIME to calculate pairwise Unifrac distances 
among different categories of interest, and used Monte-Carlo approximations in 
R73, adjusted for false discovery rate, to identify significant differences among  
these categories.

The relative abundance of each of 27 most abundant bacterial genera 
(overall relative abundance >0.5%) across Bio6 was analysed by three alternative 
generalized mixed effect models that differed in their random effect structure 
(Supplementary Information). Models were fit using a binomial likelihood with the 
‘glmer‘ function in the lme4 package and chosen by performance based on AICc. 
We accounted for spatial differences via a random intercept for binned longitude 
and latitude and allowed the effects of minimum temperature of coldest month 

(Bio6) to vary among frog genera and latitude via a random slope. Due to the 
compositional nature of the data, the observation that some taxa decrease along the 
climatic gradient, while others increase, is just one of many potential underlying 
dynamics that could yield these taxonomic responses. Indeed, is not possible to 
distinguish whether there are true changes to the community in both directions, or 
whether a few taxa are changing substantially in one direction and influencing the 
proportional abundance of another taxa selection that may appear to change in the 
opposite direction.

Predicted thermal optima, bacterial growth rates, dormancy genes and 
antibiotic synthesis genes. Kendall–Tau rank correlations were run on the 
relative abundance of all bacterial genera with a representation greater than 0.1% 
and the strongest predictor variable of bacterial richness, Bio6. For these genera, 
information on thermal optima of bacteria44 was obtained from available databases. 
The thermal optima for bacterial species in the studied amphibian microbiomes 
are not known directly but were predicted from data of other species in the same 
genera, studied under laboratory conditions. For a given species, all isolates from 
a given database were first averaged together to provide one temperature per 
species. All averaged species temperatures for the genera of interest were then 
extracted and used for analysis (see Supplementary Methods). This procedure was 
implemented to minimize over-representation of particular species within a given 
genus. Mann–Whitney U-tests were then used to compare thermal optima and the 
variance in the thermal optima between genera that were positively and negatively 
correlated with Bio6.

We used PICRUSt50 to estimate bacterial gene function, see Supplementary 
Methods for details of sOTU clustering and sample selection. In PICRUSt, we 
normalized the dataset by predicted rRNA copy number and then predicted the 
metagenome of each sample to investigate functional abundance of dormancy and 
antibiotic synthesis pathways. Dormancy analyses included all KOs contributing 
to sporulation, toxins and antitoxins and resuscitation47. Antibiotic KOs were 
extracted from KEGG’s antibiotic synthesis category. Kendall–Tau correlations 
were used to explore the relationship between these functions and our main 
predictor, Bio6. In addition to these functional abundance analyses, we directly 
explored the average predicted rRNA copy number within a microbiome and 
how it correlates with Bio6. Predicted rRNA copy number is frequently used to 
estimate bacterial growth rates45. Amphibian samples in this study had sufficient 
Nearest Sequenced Taxon Index (NSTI) values for analyses (mean = 0.060 ± 0.034, 
median = 0.061 ± 0.040). In context and according to a previous study, human-
associated samples had the lowest (best) NSTI values (0.03 ± 0.2), whereas 
mammalian guts and soil samples had much higher (worse) NSTI values, 
(0.14 ± 0.06 and 0.17 ± 0.02), respectively. Importantly, NSTI values of 0.1 for 
16S rRNA marker gene surveys and shotgun metagenomes still resulted in 
an Spearman r of roughly 0.8 and was considered an accurate gene category 
assignment50. Furthermore, NSTI is an aggregate measure based off of branch 
length and does not correspond to sequence similarity.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
A full description of data analyses is provided in the Supplementary Information. 
Data for all newly sequenced samples is available on the Short Read Archive 
(Bioproject PRJNA474496). All figures include associated raw data and there are no 
restrictions on data availability. Correspondence and requests for materials should 
be addressed to M.V. or D.C.W.
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