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Genes of the major histocompatibility complex (MHC) that underlie the adaptive immune system may

allow vertebrates to recognize their kin. True kin-recognition genes should produce signalling products

to which organisms can respond. Allelic variation in the peptide-binding region (PBR) of MHC mol-

ecules determines the pool of peptides that can be presented to trigger an immune response. To

examine whether these MHC peptides also might underlie assessments of genetic similarity, we tested

whether Xenopus laevis tadpoles socially discriminate between pairs of siblings with which they differed

in PBR amino acid sequences. We found that tadpoles (four sibships, n ¼ 854) associated preferentially

with siblings with which they were more similar in PBR amino acid sequence. Moreover, the strength of

their preference for a conspecific was directly proportional to the sequence similarity between them. Dis-

crimination was graded, and correlated more closely with functional sequence differences encoded by

MHC class I and class II alleles than with numbers of shared haplotypes. Our results thus suggest that

haplotype analyses may fail to reveal fine-scale behavioural responses to divergence in functionally

expressed sequences. We conclude that MHC–PBR gene products mediate quantitative social assessment

of immunogenetic similarity that may facilitate kin recognition in vertebrates.
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1. INTRODUCTION
Recognition mechanisms enable individuals to maintain

their organismic integrity in the face of parasites, pathogens

and competitors that might exploit them [1]. Beyond that,

inclusive fitness should be maximized by recognition of

genetic similarity [2], possibly facilitated by special kin-rec-

ognition genes [3,4]. Some behaviours directly covary with

genetic relatedness [5], and putative kin-recognition genes

have been identified [6–11]. If such genes function to

enable organisms to recognize kin, we expect to find that

social behaviours, where discrimination is adaptive, vary

in direct response to the signalling products of these

genes [12]. Here, we demonstrate that major histocom-

patibility complex (MHC)-based social preferences are

mediated by signals that directly correlate with amino

acid sequence similarity in the peptide-binding region

(PBR) of MHC molecules.

Susceptibility to pathogens varies by individuals’

MHC types [13–19]. MHC–PBR differences determine

the binding affinity of MHC molecules to self-peptides and

pathogen epitopes [20]. The pool of peptide ligands cleaved

by MHC molecules reflects structural properties of the pep-

tide-binding groove that are determined by the PBR amino

acid sequence. Discrimination thresholds based on MHC–

PBR amino acid sequence similarity have been documented

in mammals [21], birds [22] and fishes [23–26]. This

suggests that peptides restricted by the peptide-binding

groove of MHC molecules directly or indirectly generate

social recognition signals. Indeed, specific subsets of sensory

neurons in the vomeronasal organ [27,28] and main olfac-

tory epithelium [29] may detect and discern MHC

genotype-specific pools of these peptides.

As highlighted in recent reviews [30–33], recogni-

tion systems that are encoded by special kin-recognition

genes may not be evolutionarily stable. Recognition sys-

tems based on single genetic markers may lead

individuals to falsely recognize non-kin with which they

share alleles and to fail to recognize kin that bear different

alleles [2,32,33]. Moreover, single-locus recognition sys-

tems should favour cooperation among conspecifics

bearing common alleles, thereby limiting the diversifying

selection required to maintain variation in markers

[30,34]. Conversely, rare markers may become associated

with higher levels of altruism in populations with low gen-

etic recombination and dispersal rates [3,30,31]. However,

the composition of an individual’s pool of MHC-peptide

ligands is shaped not only by its MHC type, but also by

variation elsewhere in its genome [35]. Therefore, MHC-

based recognition systems should be stable if the mediating

social signals are composed of diverse MHC-peptide

ligands, influenced by both MHC-type and genome-wide

variation. In populations with low background genetic vari-

ation, such recognition systems should be sensitive in a

quantitative manner to amino acid sequence variation in

the PBR of MHC molecules.

Kin association is common in amphibian larvae

[36–39] and may be based on recognition of MHC* Author for correspondence (waldman@snu.ac.kr).
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types [39]. However, frog tadpoles discriminate even

among their siblings, specifically associating with others

with which they share MHC haplotypes in preference to

those that bear different haplotypes [11]. In Xenopus

laevis, a model organism for studying vertebrate immu-

nology [40], we tested whether social discrimination

varies proportionally to quantifiable signal differences as

determined by amino acid sequence similarity in the

MHC–PBR. If recognition is based on assessment of

PBR sequence differences, we expected that association

preferences would become stronger as sequence diver-

gence increased between subjects and each of two

simultaneously presented stimulus groups.

2. MATERIAL AND METHODS
(a) Subjects

We bred X. laevis from stock with known sequences for

MHC class I and class II alleles. The haplotypes of lin-

ked MHC class I and II loci are defined as f, g, j and r

(GenBank: class Ia accession numbers AF185579,

AF185580, AF185582 and AF185586; class II accession

numbers AF454374–AF454382) [41,42]. These strains origi-

nated from the Basel Institute for Immunology and had been

bred for several generations in our laboratory.

We crossed pairs of MHC-heterozygous frogs that shared

haplotypes (rj � rj, rg � rg, fg � fg and fr � fr), thereby pro-

ducing clutches consisting of mixtures of homozygous and

heterozygous full siblings (e.g. the rj � rj cross produced rr,

rj and jj progeny). We reared tadpoles with their siblings in

groups of 200 within 40 l tanks for two to three weeks and

fed them by maintaining a suspension of finely ground

nettle. We determined the MHC haplotypes of all stimulus

and subject tadpoles by the polymerase chain reaction

(PCR) using sequence-specific primers [11] from tail tip

tissue before behavioural tests. After taking tail clips, we iso-

lated tadpoles in 1 l polypropylene cups for one to four

weeks, during which time tadpoles’ tails fully regenerated,

and we then tested them. At the time of testing, tadpoles’

toes had not yet begun to differentiate (stage 54) [43].

(b) Sequence-specific priming PCR major

histocompatibility complex genotyping

We extracted genomic DNA from tail tips using PrepMan

Ultra sample preparation reagent (Applied Biosystems,

Foster City, CA, USA). We MHC-typed tadpoles by PCR

using sequence-specific primers for each of the four haplo-

types ( f, g, j and r; table 1), including a positive control

that amplifies a conserved region of the MHC in each reac-

tion to prevent failed reactions from being scored as negative.

Sequences were amplified on 96-well PCR plates (Axygen

Scientific, PCR-96-C) in 12.5 ml PCRs, each containing 30–

80 hg of template DNA, PCR buffer (63.6 mM KCl,

127.2 mM Tris–HCl (pH 8.3), 1.9 mM MgCl2), 180 mM

dNTP (Invitrogen) and 0.2 unit Taq polymerase (Roche

Diagnostics). Primer concentrations varied depending on

the haplotype being assessed (table 1). The conditions for

touchdown PCR in a thermocycler (Mastercycler Gradient;

Eppendorf, Hamburg, Germany) were as follows: denatura-

tion for 90 s at 948C, followed by five cycles of denaturation

for 30 s at 948C, annealing for 45 s at 708C and primer

extension for 30 s at 728C, followed by 20 cycles of denatura-

tion for 30 s at 948C, annealing for 50 s at 658C and primer

extension for 45 s at 728C, followed by five cycles of dena-

turation for 30 s at 948C, annealing for 1 min at 568C and

primer extension for 2 min at 728C. We electrophoresed

PCR products next to known positives and negatives for

40 min at 70 V in horizontal 2 per cent agarose gels. Gels

were visualized by ethidium bromide fluorescence.

(c) Association preference tests

We simultaneously exposed subjects to two stimulus groups

of 10 of their size- and stage-matched siblings on either

side of a testing apparatus, separated by mesh net enclosures.

Subjects shared different numbers (0, 1 or 2) of MHC hap-

lotypes with each of the stimulus groups. We measured times

spent by subjects associating with each of the groups.

Tests were conducted in polypropylene tanks (210 �
140 � 45 mm), with removable grey PVC-coated fibreglass

(0.028 cm diameter) mesh (7.1 � 5.5 threads cm21) nets

(43 � 140 � 45 mm) at each end, filled with 1.2 l of filtered

deep-aquifer water at 218C. A line drawn along the centre of

each tank demarcated the two halves of the test arena

(124 � 140 � 45 mm). Lighting was diffuse, achieved by

reflecting two 100 W incandescent lamps off the ceiling of

the test room.

We introduced test subjects by perforated spoon (to limit

water transfer) into the centre of the apparatus. We allowed

tadpoles to acclimate for 5 min and then tested them for

Table 1. Primer details.

primer concentrations

(pmol)

haplotype locus primer direction primer sequence
amplicon
length (bp)

haplotype
specific control

f class l-a1 sense GTCTCAGATCGAGCCTTTGG 106 16.5 3.5
antisense TTGCAGGTTCATCTCTACCAGT 16.5

g class l-a1 sense GTCTCAGATCGAGCCTTTGG 178 12.5 1.0

antisense GCTCTGATCCCTTGGCAAT 20.0
j class l-a1 sense GTCTCAGATCGAACCTTTGG 178 15.0 0.8

antisense CCTCTTCTCCTTTCGCTTT 30.0
r class l-a1 sense AGATAGAGCATTTGGGCTGC 134 21.2 2.5

antisense ATTCAGGTCCTGCTTTGTCC 21.2

control class l-a3 sense TCACCCTCATGTAAGAATTTCAGA 236 n.a. n.a.
antisense GCTCCACATGACAGGCATAA n.a.
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40 min. To eliminate any side bias, we tested each subject

twice, reversing the stimulus groups after a water change. Con-

sequently, each tadpole was tested for a total of 80 min.

Tadpole association tests were recorded using a CCTV

camera (Panasonic WV-BP330/G) with an adjustable focal

lens (Panasonic WV-LZF61/2) positioned 1 m above the test-

ing apparatus and a time-lapse (one-fifth speed) VHS recorder

(Panasonic AG-TL350). We tracked movements of subjects

from videotape using ETHOVISION v. 3.0 (Noldus Information

Technology, Wageningen, The Netherlands). Time periods

spent on either side of the centre line were computed for

each subject.

We tested all possible association preferences among

siblings: whether (i) MHC-homozygous subjects preferred

their siblings with which they shared both MHC haplotypes

to those with which they shared no MHC haplotypes

(2 versus 0, n ¼ 262); (ii) MHC-homozygous subjects pre-

ferred siblings sharing both MHC haplotypes to those with

which they shared only one MHC haplotype (2 versus 1, n ¼

187); and (iii) MHC-homozygous subjects preferred siblings

with which they shared only one MHC haplotype to those

with which they shared no MHC haplotypes (1 versus 0, n ¼

199). We also tested MHC-heterozygous subjects to deter-

mine whether they discriminated between siblings with

which they shared one or both MHC haplotypes (heterozy-

gotes, n ¼ 206). Sample sizes varied among genotypes within

families dependent on the availability of genotyped progeny

of appropriate developmental stage (table 2). The behavioural

data on which analyses were based have been deposited in the

Dryad data repository (doi:10.5061/dryad.2204v).

For each choice test type, we evaluated the overall effect of

MHC similarity on subjects’ association preferences by

nested analysis of variance using type III sums of squares

[44]. To distinguish between association preferences of the

haplotypes within families while maintaining statistical inde-

pendence, we compared alternate subjects of each haplotype

for the time spent associating with siblings sharing more

MHC haplotypes with that spent associating with siblings

sharing fewer MHC haplotypes. The effects of MHC simi-

larity, genotype nested within MHC similarity, and family

nested within genotype and MHC similarity were included

as factors in each analysis. Data met assumptions of normal-

ity. Analyses were conducted with JMP v. 8.0.2 (SAS

Institute, 2009). All statistical inferences were drawn on

two-tailed distributions with a ¼ 0.05.

For each choice test, in each of the four families, we cal-

culated the percentage of amino acids shared at the MHC

class I (a1 and a2 domain exons) and MHC class II PBRs

(a1 and a2 domain exons of the DAA and DBA loci)

between test subjects and each of the two stimulus groups

from published sequences [41,42]. We then calculated the

‘stimulus differential’ between the subject and the two stimu-

lus groups by subtracting the per cent amino acid similarity

of the less MHC-similar stimulus group from that of the

more MHC-similar stimulus group. The stimulus differential

is a function of the type of choice test (1 versus 0; 2 versus 1;

and 2 versus 0 shared haplotypes, heterozygotes) and of the

sequence differences between the haplotypes.

We correlated subjects’ time preference for the more

MHC-similar stimulus group with the corresponding stimu-

lus differential scores, computed separately for MHC class I

and II PBR amino acid sequences. We did not include the

MHC class II DCA locus in the analysis as it has only

been partially sequenced for the f haplotype and is

expressed in very low amounts, if at all [42]. Spearman’s

rank correlations were conducted with JMP v. 8.0.2.

3. RESULTS
Tadpoles associated preferentially with the stimulus group

with which they shared more MHC haplotypes. The mag-

nitude of the preference increased in direct proportion to

the stimulus differential score computed for each test

(four sibships, n ¼ 854; figure 1). We obtained similar

results when considering MHC class I (rS ¼ 0.14,

p , 0.0001) and class II (rS ¼ 0.14, p , 0.0001) PBR

amino acid sequences. Subjects showed stronger preferences

for their own haplotype when given a choice between sibling

groups with more divergent PBR sequences.

Analysis of association preferences by PBR sequence

divergence reveals fine-grained recognition abilities that

do not emerge as clearly from haplotype analyses. Tad-

poles preferred siblings with which they shared both

MHC haplotypes to those with which they shared one

(2 versus 1; F1,171 ¼ 5.39, p ¼ 0.021) or no (2 versus 0;

F1,246 ¼ 21.39, p , 0.001) MHC haplotypes (figure 2).

However, we found no significant preferences for siblings

with which subjects shared only one MHC haplotype to

those with which they shared none (1 versus 0; F1,183 ¼

0.25, p ¼ 0.62). MHC heterozygotes also showed no pre-

ference between stimulus groups that bore different

Table 2. Tadpole association preferences by subject group.

number of

shared
haplotypes

subject

MHC
type

parental
cross

stimulus

MHC
types n

2 versus 0 ff fg � fg ff versus gg 37
ff fr � fr ff versus rr 41
gg fg � fg gg versus ff 41
gg rg � rg gg versus rr 31
jj rj � rj jj versus rr 16

rr rj � rj rr versus jj 19
rr rg � rg rr versus gg 41
rr fr � fr ff versus rr 36

2 versus 1 ff fg � fg ff versus fg 23
ff fr � fr ff versus fr 40
gg fg � fg gg versus fg 23
gg rg � rg gg versus gr 30

jj rj � rj jj versus jr 10
rr rj � rj rr versus jr 9
rr rg � rg rr versus gr 25
rr fr � fr rr versus fr 27

1 versus 0 ff fg � fg fg versus gg 20
ff fr � fr fr versus rr 40

gg fg � fg fg versus ff 29
gg rg � rg gr versus rr 34
jj rj � rj jr versus rr 16
rr rj � rj jr versus jj 8
rr rg � rg gr versus gg 20

rr fr � fr fr versus ff 32

heterozygotes fg fg � fg fg versus ff 26

fg fg � fg fg versus gg 25
rg rg � rg rg versus rr 26
rg rg � rg rg versus gg 23
rj rj � rj rj versus jj 19
rj rj � rj rj versus rr 28

fr fr � fr fr versus ff 31
fr fr � fr fr versus rr 28
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combinations of shared MHC haplotypes (F1,190 ¼ 0.46,

p ¼ 0.50). See table 3 for full ANOVA results.

4. DISCUSSION
Xenopus laevis tadpoles socially discriminate among their

siblings based on quantitative assessment of their MHC–

PBR amino acid sequence differences. While subjects’ dis-

crimination among siblings varied by numbers of shared

MHC haplotypes, overall MHC-assortative preferences,

spanning all haplotypes, correlated more closely with func-

tional sequence differences in the PBR of MHC molecules.

Analyses of PBR sequence differences thus are more robust

than haplotype analyses in explaining the behavioural dis-

crimination that we observed. Rather than recognizing on

the basis of shared MHC alleles, our results suggest that

tadpoles assess differential ‘MHC-signal’ strength, deter-

mined by the PBR amino acid sequences encoded by

MHC alleles.

Thus, even when they share equal proportions of other

genes identical by descent, X. laevis tadpoles discriminate

among siblings by effectively comparing functional prop-

erties of their own MHC–PBR with those of others.

Association preferences correspond to individuals’ allelic

similarity, specifically in MHC class I and class II loci,

dependent on shared ligand anchor residues (PBR

amino acids) encoded by these genes. These results pro-

vide the strongest evidence yet that factors associated

with the binding specificity of the peptide-binding

groove of MHC molecules can elicit kin recognition. By

testing only siblings, our experimental design controlled

for recognition possibly based on products of other genes.

Differences in MHC-ligand binding efficiency can influ-

ence markers used in MHC-type recognition either by

restricting different excreted peptide sequences [27,45] or

by selecting the microbial biota associated with individuals

[46–48]. The peptide-binding groove of MHC molecules

generates a pool of 9-mer peptides cleaved from longer

protein sequences. These 9-mers are individually

distinctive [49] and may serve as markers of overall genetic

relatedness. While further work is required to determine

the mechanism by which MHC ligand peptides stimulate

larval olfactory mucosa, our findings suggest that these

small 9-mer subunits carry sufficient information for

social discrimination of kin.

The MHC–PBR determined pool of peptides that serve

as ligands for MHC molecules [20,49] contributes to indi-

vidual odour profiles [50] that have been implicated in

individual preferences of mice [27–29] and fish [45]. Preg-

nant mice are more likely to undergo pregnancy block if

exposed to synthesized 9-mers based on disparate rather

than familiar MHC class I peptide ligands [27]. Similarly,

mate choice decisions of female sticklebacks can be predic-

tably modified by adding different combinations of

synthetic 9-mer peptides [45]. Sticklebacks discriminate

cues of potential mates based on their diversity of MHC

alleles across multiple MHC class II loci [51,52].

Unlike class II molecules, class I molecules have not

been detected in X. laevis tadpoles at the developmental

stages that we examined [53]. Nonetheless, because

MHC class I mRNA transcripts have been detected in

organs whose epithelial surfaces are in contact with the

environment, such as lungs, gills and intestines [54], the

class I locus is as likely as the class II loci to be involved

in MHC-type discrimination. As MHC class I transcripts

in tadpoles are limited mainly to tissues in contact with

the external environment, excreted MHC peptides may

be sufficient for the transmission of MHC-specific signals

in an aqueous environment.

Our results demonstrate that behavioural responses can

be elicited by quantitative evaluation of MHC–PBR amino

acid sequence differences. Certainly, many types of cues

aside from those related to the MHC influence social pre-

ferences [9,32,39] but discrimination based on those cues
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Figure 1. Association preference of subjects for the more

immunogenetically similar stimulus group as a function of
the MHC ‘stimulus differential’ between the two stimulus
groups based on MHC class I (circles) and MHC class II
PBR (squares) amino acid sequence similarity. The stimulus
differential between each subject and the two stimulus

groups was determined by subtracting the per cent amino
acid similarity of the less MHC-similar stimulus group from
that of the more MHC-similar stimulus group. Means+
s.e.m. are shown.
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Figure 2. Mean MHC-similarity preferences of MHC-homo-
zygous subjects (four genotypes: ff, gg, jj and rr) among

stimulus groups with different numbers of shared MHC hap-
lotypes (2 versus 0 shared haplotypes; 2 versus 1 shared
haplotypes; 1 versus 0 shared haplotypes). (a) Subjects
spent more time associating with siblings sharing both
MHC haplotypes than with siblings sharing no MHC haplo-

types (2 versus 0). (b) Subjects spent more time associating
with siblings sharing both MHC haplotypes than with sib-
lings sharing only one MHC haplotype (2 versus 1).
(c) Subjects did not differ in time associating with siblings shar-
ing one or no MHC haplotypes (1 versus 0). Means+ s.e.m.

are shown. *p , 0.05, **p , 0.001 (two-tailed).
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was not possible in this study. However, this study points to

the possibility that MHC molecules also may facilitate rec-

ognition of genome-wide sequence differences that

contribute to the composition of individuals’ MHC-

restricted peptide ligands.

That the same genetic sequence polymorphisms deter-

mine self/non-self recognition and social compatibility

suggests a shared functional framework driving the evol-

ution of MHC diversity [55,56]. Fine-scale quantitative

assessment of MHC-similarity may permit the recog-

nition not only of closely related individuals [33], but

also of possible disease risks associated with immunoge-

netic compatibility [17,18]. Analyses based on fine-scale

divergence in functionally expressed sequences can

reveal genetic effects on important biological traits that

simple examination of genotypes may fail to discern.
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